
Optimization Toolbox™

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Optimization Toolbox™ User's Guide
© COPYRIGHT 1990–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 1990 First printing
December 1996 Second printing For MATLAB® 5
January 1999 Third printing For Version 2 (Release 11)
September 2000 Fourth printing For Version 2.1 (Release 12)
June 2001 Online only Revised for Version 2.1.1 (Release 12.1)
September 2003 Online only Revised for Version 2.3 (Release 13SP1)
June 2004 Fifth printing Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.0.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.0.4 (Release 2006a)
September 2006 Sixth printing Revised for Version 3.1 (Release 2006b)
March 2007 Seventh printing Revised for Version 3.1.1 (Release 2007a)
September 2007 Eighth printing Revised for Version 3.1.2 (Release 2007b)
March 2008 Online only Revised for Version 4.0 (Release 2008a)
October 2008 Online only Revised for Version 4.1 (Release 2008b)
March 2009 Online only Revised for Version 4.2 (Release 2009a)
September 2009 Online only Revised for Version 4.3 (Release 2009b)
March 2010 Online only Revised for Version 5.0 (Release 2010a)
September 2010 Online only Revised for Version 5.1 (Release 2010b)
April 2011 Online only Revised for Version 6.0 (Release 2011a)
September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.2.1 (Release 2012b)
March 2013 Online only Revised for Version 6.3 (Release 2013a)
September 2013 Online only Revised for Version 6.4 (Release 2013b)
March 2014 Online only Revised for Version 7.0 (Release 2014a)
October 2014 Online only Revised for Version 7.1 (Release 2014b)
March 2015 Online only Revised for Version 7.2 (Release 2015a)
September 2015 Online only Revised for Version 7.3 (Release 2015b)

v

Contents

Acknowledgments

Getting Started
1

Optimization Toolbox Product Description 1-2
Key Features . 1-2

Solve a Constrained Nonlinear Problem 1-3
Problem Formulation: Rosenbrock's Function 1-3
Defining the Problem in Toolbox Syntax 1-4
Running the Optimization . 1-5
Interpreting the Result . 1-10

Set Up a Linear Program . 1-12
Convert a Problem to Solver Form 1-12
Model Description . 1-12
Solution Method . 1-13
Bibliography . 1-20

Setting Up an Optimization
2

Optimization Theory Overview . 2-2

Optimization Toolbox Solvers . 2-3

vi Contents

Choosing a Solver . 2-5
Optimization Decision Table . 2-5
Choosing the Algorithm . 2-7
Problems Handled by Optimization Toolbox Functions 2-14

Writing Objective Functions . 2-17
Types of Objective Functions . 2-17
Writing Scalar Objective Functions 2-18
Writing Vector and Matrix Objective Functions 2-25
Writing Objective Functions for Linear or Quadratic

Problems . 2-28
Maximizing an Objective . 2-28

Matrix Arguments . 2-30

Writing Constraints . 2-31
Types of Constraints . 2-31
Iterations Can Violate Constraints 2-32
Bound Constraints . 2-33
Linear Inequality Constraints . 2-34
Linear Equality Constraints . 2-35
Nonlinear Constraints . 2-35
Or Instead of And Constraints . 2-38
How to Use All Types of Constraints 2-43

Objective and Nonlinear Constraints in the Same Function 2-45

Passing Extra Parameters . 2-50
Extra Parameters, Fixed Variables, or Data 2-50
Anonymous Functions . 2-50
Nested Functions . 2-52
Global Variables . 2-52

What Are Options? . 2-54

Options in Common Use: Tuning and Troubleshooting . . . 2-55

Set and Change Options . 2-56

Choose Between optimoptions and optimset 2-57

View Options . 2-59

vii

Tolerances and Stopping Criteria . 2-61

Checking Validity of Gradients or Jacobians 2-65
How to Check Derivatives . 2-65
Example: Checking Derivatives of Objective and Constraint

Functions . 2-66

Bibliography . 2-73

Examining Results
3

Current Point and Function Value . 3-2

Exit Flags and Exit Messages . 3-3
Exit Flags . 3-3
Exit Messages . 3-4
Enhanced Exit Messages . 3-5
Exit Message Options . 3-8

Iterations and Function Counts . 3-10

First-Order Optimality Measure . 3-11
What Is First-Order Optimality Measure? 3-11
Stopping Rules Related to First-Order Optimality 3-11
Unconstrained Optimality . 3-12
Constrained Optimality Theory . 3-12
Constrained Optimality in Solver Form 3-14

Iterative Display . 3-16
Introduction . 3-16
Common Headings . 3-17
Function-Specific Headings . 3-17

Output Structures . 3-24

Lagrange Multiplier Structures . 3-25

Hessian . 3-26
fminunc Hessian . 3-26

viii Contents

fmincon Hessian . 3-27

Plot Functions . 3-29
Plot an Optimization During Execution 3-29
Using a Plot Function . 3-29

Output Functions . 3-35
What Is an Output Function? . 3-35
Example: Using Output Functions 3-35

Steps to Take After Running a Solver
4

Overview of Next Steps . 4-2

When the Solver Fails . 4-3
Too Many Iterations or Function Evaluations 4-3
Converged to an Infeasible Point . 4-7
Problem Unbounded . 4-9
fsolve Could Not Solve Equation . 4-9

Solver Takes Too Long . 4-11
Enable Iterative Display . 4-11
Enable FunValCheck . 4-11
Use Appropriate Tolerances . 4-12
Use a Plot Function . 4-12
Enable DerivativeCheck . 4-12
Use Inf Instead of a Large, Arbitrary Bound 4-13
Use an Output Function . 4-13
Use a Sparse Solver or a Multiply Function 4-13
Use Parallel Computing . 4-14

When the Solver Might Have Succeeded 4-15
Final Point Equals Initial Point . 4-15
Local Minimum Possible . 4-15

When the Solver Succeeds . 4-22
What Can Be Wrong If The Solver Succeeds? 4-22
1. Change the Initial Point . 4-23
2. Check Nearby Points . 4-24

ix

3. Check your Objective and Constraint Functions 4-25
Local vs. Global Optima . 4-26

Optimizing a Simulation or Ordinary Differential
Equation . 4-31

What Is Optimizing a Simulation or ODE? 4-31
Potential Problems and Solutions . 4-31
Bibliography . 4-36

Optimization App
5

Optimization App . 5-2
Optimization App Basics . 5-2
Specifying Certain Options . 5-8
Importing and Exporting Your Work 5-11

Nonlinear algorithms and examples
6

Unconstrained Nonlinear Optimization Algorithms 6-2
Unconstrained Optimization Definition 6-2
fminunc trust-region Algorithm 6-2
fminunc quasi-newton Algorithm 6-5
fminsearch Algorithm . 6-10

fminunc Unconstrained Minimization 6-13
Step 1: Write a file objfun.m. 6-13
Step 2: Set options. 6-13
Step 3: Invoke fminunc using the options. 6-13

Minimization with Gradient and Hessian 6-15
Step 1: Write a file brownfgh.m that computes the objective

function, the gradient of the objective, and the sparse
tridiagonal Hessian matrix. 6-15

Step 2: Call a nonlinear minimization routine with a starting
point xstart. 6-15

x Contents

Minimization with Gradient and Hessian Sparsity Pattern 6-17
Step 1: Write a file brownfg.m that computes the objective

function and the gradient of the objective. 6-17
Step 2: Call a nonlinear minimization routine with a starting

point xstart. 6-18

Constrained Nonlinear Optimization Algorithms 6-21
Constrained Optimization Definition 6-21
fmincon Trust Region Reflective Algorithm 6-21
fmincon Active Set Algorithm . 6-26
fmincon SQP Algorithm . 6-36
fmincon Interior Point Algorithm . 6-37
fminbnd Algorithm . 6-41
fseminf Problem Formulation and Algorithm 6-41

Nonlinear Inequality Constraints . 6-45
Step 1: Write a file objfun.m for the objective function. 6-45
Step 2: Write a file confun.m for the constraints. 6-45
Step 3: Invoke constrained optimization routine. 6-45

Nonlinear Constraints with Gradients 6-47
Step 1: Write a file for the objective function and gradient. . 6-47
Step 2: Write a file for the nonlinear constraints and the

gradients of the nonlinear constraints. 6-47
Step 3: Invoke the constrained optimization routine. 6-48

fmincon Interior-Point Algorithm with Analytic Hessian . . 6-50

Linear or Quadratic Objective with Quadratic Constraints 6-56

Nonlinear Equality and Inequality Constraints 6-61
Step 1: Write a file objfun.m. 6-61
Step 2: Write a file confuneq.m for the nonlinear constraints. 6-61
Step 3: Invoke constrained optimization routine. 6-61

Optimization App with the fmincon Solver 6-63
Step 1: Write a file objecfun.m for the objective function. . . . 6-63
Step 2: Write a file nonlconstr.m for the nonlinear

constraints. 6-63
Step 3: Set up and run the problem with the Optimization

app. 6-64

xi

Minimization with Bound Constraints and Banded
Preconditioner . 6-68

Step 1: Write a file tbroyfg.m that computes the objective
function and the gradient of the objective 6-68

Step 2: Call a nonlinear minimization routine with a starting
point xstart. 6-70

Minimization with Linear Equality Constraints 6-73
Step 1: Write a file brownfgh.m that computes the objective

function, the gradient of the objective, and the sparse
tridiagonal Hessian matrix. 6-73

Step 2: Call a nonlinear minimization routine with a starting
point xstart. 6-73

Minimization with Dense Structured Hessian, Linear
Equalities . 6-75

Hessian Multiply Function for Lower Memory 6-75
Step 1: Write a file brownvv.m that computes the objective

function, the gradient, and the sparse part of the Hessian. 6-76
Step 2: Write a function to compute Hessian-matrix products

for H given a matrix Y. 6-76
Step 3: Call a nonlinear minimization routine with a starting

point and linear equality constraints. 6-77
Preconditioning . 6-79

Symbolic Math Toolbox Calculates Gradients and Hessians 6-80
Create the Variables . 6-82
Include the Linear Constraints . 6-83
Create the Nonlinear Constraints, Their Gradients and

Hessians . 6-85
Create the Objective Function, Its Gradient and Hessian . . 6-85
Create the Objective Function File 6-86
Create the Constraint Function File 6-87
Generate the Hessian Files . 6-87
Run the Optimization . 6-88
Compare to Optimization Without Gradients and Hessians . 6-91
Clear the Symbolic Variable Assumptions 6-92

One-Dimensional Semi-Infinite Constraints 6-93

Two-Dimensional Semi-Infinite Constraint 6-96

xii Contents

Multiobjective Algorithms and Examples
7

Multiobjective Optimization Algorithms 7-2
Multiobjective Optimization Definition 7-2
Algorithms . 7-3

Using fminimax with a Simulink Model 7-7

Signal Processing Using fgoalattain 7-10
Step 1: Write a file filtmin.m . 7-11
Step 2: Invoke optimization routine 7-11

Generate and Plot a Pareto Front . 7-13

Linear Programming and Mixed-Integer Linear
Programming

8
Linear Programming Algorithms . 8-2

Linear Programming Definition . 8-2
Interior-Point linprog Algorithm . 8-2
Interior-Point-Legacy Linear Programming 8-8
Active-Set linprog Algorithm . 8-11
linprog Simplex Algorithm . 8-15
Dual-Simplex Algorithm . 8-19

Typical Linear Programming Problem 8-22

Maximize Long-Term Investments Using Linear
Programming . 8-24

Mixed-Integer Linear Programming Algorithms 8-38
Mixed-Integer Linear Programming Definition 8-38
intlinprog Algorithm . 8-38

Tuning Integer Linear Programming 8-46
Change Options to Improve the Solution Process 8-46
Some “Integer” Solutions Are Not Integers 8-47

xiii

Large Components Not Integer Valued 8-47
Large Coefficients Disallowed . 8-48

Mixed-Integer Linear Programming Basics 8-49

Factory, Warehouse, Sales Allocation Model 8-52

Travelling Salesman Problem . 8-64

Optimal Dispatch of Power Generators 8-72

Mixed-Integer Quadratic Programming Portfolio
Optimization . 8-85

Solve Sudoku Puzzles Via Integer Programming 8-94

Quadratic Programming
9

Quadratic Programming Algorithms . 9-2
Quadratic Programming Definition . 9-2
interior-point-convex quadprog Algorithm 9-2
trust-region-reflective quadprog Algorithm 9-6
active-set quadprog Algorithm 9-11

Quadratic Minimization with Bound Constraints 9-16
Step 1: Load the Hessian and define f, lb, and ub. 9-16
Step 2: Call a quadratic minimization routine with a starting

point xstart. 9-16

Quadratic Minimization with Dense, Structured Hessian . 9-19
Take advantage of a structured Hessian 9-19
Step 1: Decide what part of H to pass to quadprog as the first

argument. 9-20
Step 2: Write a function to compute Hessian-matrix products

for H. 9-20
Step 3: Call a quadratic minimization routine with a starting

point. 9-21
Preconditioning . 9-22

xiv Contents

Large Sparse Quadratic Program with Interior Point
Algorithm . 9-25

Least Squares
10

Least-Squares (Model Fitting) Algorithms 10-2
Least Squares Definition . 10-2
Trust-Region-Reflective Least Squares 10-3
Interior-Point Linear Least Squares 10-7
Levenberg-Marquardt Method . 10-7

lsqnonlin with a Simulink Model . 10-11

Nonlinear Least Squares With and Without Jacobian 10-17
Problem definition and solution technique 10-17
Step 1: Write a file myfun.m that computes the objective

function values. 10-17
Step 2: Call the nonlinear least-squares routine. 10-18
Step 3: Include a Jacobian. 10-18

Linear Least Squares with Bound Constraints 10-21

Optimization App with the lsqlin Solver 10-23
The Problem . 10-23
Setting Up the Problem . 10-23

Jacobian Multiply Function with Linear Least Squares . . 10-26

Nonlinear Curve Fitting with lsqcurvefit 10-31

Fit a Model to Complex-Valued Data 10-33

xv

Systems of Equations
11

Equation Solving Algorithms . 11-2
Equation Solving Definition . 11-2
Trust-Region Reflective fsolve Algorithm 11-2
Trust-Region Dogleg Method . 11-5
Levenberg-Marquardt Method . 11-7
\ Algorithm . 11-8
fzero Algorithm . 11-8

Nonlinear Equations with Analytic Jacobian 11-9
Step 1: Write a file bananaobj.m to compute the objective

function values and the Jacobian. 11-10
Step 2: Call the solve routine for the system of equations. . 11-10

Nonlinear Equations with Finite-Difference Jacobian . . . 11-12

Nonlinear Equations with Jacobian 11-14
Step 1: Write a file nlsf1.m that computes the objective function

values and the Jacobian. 11-14
Step 2: Call the solve routine for the system of equations. . 11-14

Nonlinear Equations with Jacobian Sparsity Pattern . . . 11-17
Step 1: Write a file nlsf1a.m that computes the objective

function values. 11-17
Step 2: Call the system of equations solve routine. 11-18

Nonlinear Systems with Constraints 11-20
Solve Equations with Inequality Constraints 11-20
Use Different Start Points . 11-21
Use Different Algorithms . 11-21
Use lsqnonlin with Bounds . 11-22
Set Equations and Inequalities as fmincon Constraints . . . 11-23

xvi Contents

Parallel Computing for Optimization
12

Parallel Computing in Optimization Toolbox Functions . . 12-2
Parallel Optimization Functionality 12-2
Parallel Estimation of Gradients . 12-2
Nested Parallel Functions . 12-3

Using Parallel Computing in Optimization Toolbox 12-5
Using Parallel Computing with Multicore Processors 12-5
Using Parallel Computing with a Multiprocessor Network . . 12-6
Testing Parallel Computations . 12-7

Minimizing an Expensive Optimization Problem Using
Parallel Computing Toolbox™ . 12-8

Improving Performance with Parallel Computing 12-15
Factors That Affect Speed . 12-15
Factors That Affect Results . 12-15
Searching for Global Optima . 12-16

Argument and Options Reference
13

Function Arguments . 13-2
Input Arguments . 13-2
Output Arguments . 13-4

Optimization Options Reference . 13-7
Optimization Options . 13-7
Output Function . 13-20
Plot Functions . 13-29

intlinprog Output Functions and Plot Functions 13-30
What Are Output Functions and Plot Functions? 13-30
Custom Function Syntax . 13-31
optimValues Structure . 13-31

xvii

Functions — Alphabetical List
14

xix

Acknowledgments
MathWorks would like to acknowledge the following contributors to Optimization
Toolbox™ algorithms.

Thomas F. Coleman researched and contributed algorithms for constrained and
unconstrained minimization, nonlinear least squares and curve fitting, constrained
linear least squares, quadratic programming, and nonlinear equations.

Dr. Coleman is Professor of Combinatorics and Optimization at the University of
Waterloo.

Yin Zhang researched and contributed the large-scale linear programming algorithm.

Dr. Zhang is Professor of Computational and Applied Mathematics at Rice University.

1

Getting Started

• “Optimization Toolbox Product Description” on page 1-2
• “Solve a Constrained Nonlinear Problem” on page 1-3
• “Set Up a Linear Program” on page 1-12

1 Getting Started

1-2

Optimization Toolbox Product Description
Solve linear, quadratic, integer, and nonlinear optimization problems

Optimization Toolbox provides functions for finding parameters that minimize or
maximize objectives while satisfying constraints. The toolbox includes solvers for linear
programming, mixed-integer linear programming, quadratic programming, nonlinear
optimization, and nonlinear least squares. You can use these solvers to find optimal
solutions to continuous and discrete problems, perform tradeoff analyses, and incorporate
optimization methods into algorithms and applications.

Key Features

• Nonlinear and multiobjective optimization
• Solvers for nonlinear least squares, data fitting, and nonlinear equations
• Quadratic and linear programming
• Mixed-integer linear programming
• Optimization app for defining and solving optimization problems and monitoring

solution progress
• Acceleration of constrained nonlinear solvers with Parallel Computing Toolbox™

 Solve a Constrained Nonlinear Problem

1-3

Solve a Constrained Nonlinear Problem

In this section...

“Problem Formulation: Rosenbrock's Function” on page 1-3
“Defining the Problem in Toolbox Syntax” on page 1-4
“Running the Optimization” on page 1-5
“Interpreting the Result” on page 1-10

Problem Formulation: Rosenbrock's Function

Consider the problem of minimizing Rosenbrock's function

f x x x x() () ,= -() + -100 12 1
2

2

1
2

over the unit disk, i.e., the disk of radius 1 centered at the origin. In other words, find x
that minimizes the function f(x) over the set x x

1

2

2

2
1+ £ . This problem is a minimization

of a nonlinear function with a nonlinear constraint.

Note: Rosenbrock's function is a standard test function in optimization. It has a unique
minimum value of 0 attained at the point (1,1). Finding the minimum is a challenge for
some algorithms since it has a shallow minimum inside a deeply curved valley.

Here are two views of Rosenbrock's function in the unit disk. The vertical axis is log-
scaled; in other words, the plot shows log(1+f(x)). Contour lines lie beneath the surface
plot.

1 Getting Started

1-4

Rosenbrock's function, log-scaled: two views.

The function f(x) is called the objective function. This is the function you wish to
minimize. The inequality x x

1

2

2

2
1+ £ is called a constraint. Constraints limit the set of

x over which you may search for a minimum. You can have any number of constraints,
which are inequalities or equations.

All Optimization Toolbox optimization functions minimize an objective function. To
maximize a function f, apply an optimization routine to minimize –f. For more details
about maximizing, see “Maximizing an Objective” on page 2-28.

Defining the Problem in Toolbox Syntax

To use Optimization Toolbox software, you need to

 Solve a Constrained Nonlinear Problem

1-5

1 Define your objective function in the MATLAB® language, as a function file or
anonymous function. This example will use a function file.

2 Define your constraint(s) as a separate file or anonymous function.

Function File for Objective Function

A function file is a text file containing MATLAB commands with the extension .m. Create
a new function file in any text editor, or use the built-in MATLAB Editor as follows:

1 At the command line enter:

edit rosenbrock

The MATLAB Editor opens.
2 In the editor enter:

function f = rosenbrock(x)

f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

3 Save the file by selecting File > Save.

File for Constraint Function

Constraint functions must be formulated so that they are in the form c(x) ≤ 0 or
ceq(x) = 0. The constraint x x

1

2

2

2
1+ £ needs to be reformulated as x x

1

2

2

2
1 0+ - £ in order

to have the correct syntax.

Furthermore, toolbox functions that accept nonlinear constraints need to have both
equality and inequality constraints defined. In this example there is only an inequality
constraint, so you must pass an empty array [] as the equality constraint function ceq.

With these considerations in mind, write a function file for the nonlinear constraint:

1 Create a file named unitdisk.m containing the following code:

function [c, ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

2 Save the file unitdisk.m.

Running the Optimization

There are two ways to run the optimization:

1 Getting Started

1-6

• Using the “Optimization app” on page 1-6
• Using command line functions; see “Minimizing at the Command Line” on page

1-10.

Optimization app

Note: The Optimization app warns that it will be removed in a future release.

1 Start the Optimization app by typing optimtool at the command line.

 Solve a Constrained Nonlinear Problem

1-7

For more information about this tool, see “Optimization App” on page 5-2.
2 The default Solver fmincon - Constrained nonlinear minimization is

selected. This solver is appropriate for this problem, since Rosenbrock's function is
nonlinear, and the problem has a constraint. For more information about how to
choose a solver, see “Choosing a Solver” on page 2-5.

3 In the Algorithm pop-up menu choose Interior point, which is the default.

1 Getting Started

1-8

4 For Objective function enter @rosenbrock. The @ character indicates that this is
a function handle of the file rosenbrock.m.

5 For Start point enter [0 0]. This is the initial point where fmincon begins its
search for a minimum.

6 For Nonlinear constraint function enter @unitdisk, the function handle of
unitdisk.m.

Your Problem Setup and Results pane should match this figure.

7 In the Options pane (center bottom), select iterative in the Level of display pop-
up menu. (If you don't see the option, click Display to command window.) This
shows the progress of fmincon in the command window.

 Solve a Constrained Nonlinear Problem

1-9

8 Click Start under Run solver and view results.

The following message appears in the box below the Start button:
Optimization running.

Objective function value: 0.045674824758137236

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Your objective function value may differ slightly, depending on your computer system
and version of Optimization Toolbox software.

The message tells you that:

• The search for a constrained optimum ended because the derivative of the objective
function is nearly 0 in directions allowed by the constraint.

• The constraint is satisfied to the requisite accuracy.

“Exit Flags and Exit Messages” on page 3-3 discusses exit messages such as these.

The minimizer x appears under Final point.

1 Getting Started

1-10

Minimizing at the Command Line

You can run the same optimization from the command line, as follows.

1 Create an options structure to choose iterative display and the interior-point
algorithm:

options = optimoptions(@fmincon,...

 'Display','iter','Algorithm','interior-point');

2 Run the fmincon solver with the options structure, reporting both the location x of
the minimizer, and value fval attained by the objective function:

[x,fval] = fmincon(@rosenbrock,[0 0],...

 [],[],[],[],[],[],@unitdisk,options)

The six sets of empty brackets represent optional constraints that are not being used
in this example. See the fmincon function reference pages for the syntax.

MATLAB outputs a table of iterations, and the results of the optimization:
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints are satisfied to within the selected value of the constraint tolerance.

x =

 0.7864 0.6177

fval =

 0.0457

The message tells you that the search for a constrained optimum ended because the
derivative of the objective function is nearly 0 in directions allowed by the constraint, and
that the constraint is satisfied to the requisite accuracy. Several phrases in the message
contain links that give you more information about the terms used in the message. For
more details about these links, see “Enhanced Exit Messages” on page 3-5.

Interpreting the Result

The iteration table in the command window shows how MATLAB searched for the
minimum value of Rosenbrock's function in the unit disk. This table is the same whether
you use Optimization app or the command line. MATLAB reports the minimization as
follows:

 Solve a Constrained Nonlinear Problem

1-11

 First-order Norm of

 Iter F-count f(x) Feasibility optimality step

 0 3 1.000000e+00 0.000e+00 2.000e+00

 1 13 7.753537e-01 0.000e+00 6.250e+00 1.768e-01

 2 18 6.519648e-01 0.000e+00 9.048e+00 1.679e-01

 3 21 5.543209e-01 0.000e+00 8.033e+00 1.203e-01

 4 24 2.985207e-01 0.000e+00 1.790e+00 9.328e-02

 5 27 2.653799e-01 0.000e+00 2.788e+00 5.723e-02

 6 30 1.897216e-01 0.000e+00 2.311e+00 1.147e-01

 7 33 1.513701e-01 0.000e+00 9.706e-01 5.764e-02

 8 36 1.153330e-01 0.000e+00 1.127e+00 8.169e-02

 9 39 1.198058e-01 0.000e+00 1.000e-01 1.522e-02

 10 42 8.910052e-02 0.000e+00 8.378e-01 8.301e-02

 11 45 6.771960e-02 0.000e+00 1.365e+00 7.149e-02

 12 48 6.437664e-02 0.000e+00 1.146e-01 5.701e-03

 13 51 6.329037e-02 0.000e+00 1.883e-02 3.774e-03

 14 54 5.161934e-02 0.000e+00 3.016e-01 4.464e-02

 15 57 4.964194e-02 0.000e+00 7.913e-02 7.894e-03

 16 60 4.955404e-02 0.000e+00 5.462e-03 4.185e-04

 17 63 4.954839e-02 0.000e+00 3.993e-03 2.208e-05

 18 66 4.658289e-02 0.000e+00 1.318e-02 1.255e-02

 19 69 4.647011e-02 0.000e+00 8.006e-04 4.940e-04

 20 72 4.569141e-02 0.000e+00 3.136e-03 3.379e-03

 21 75 4.568281e-02 0.000e+00 6.439e-05 3.974e-05

 22 78 4.568281e-02 0.000e+00 8.000e-06 1.083e-07

 23 81 4.567641e-02 0.000e+00 1.601e-06 2.793e-05

 24 84 4.567482e-02 0.000e+00 2.062e-08 6.916e-06

This table might differ from yours depending on toolbox version and computing platform.
The following description applies to the table as displayed.

• The first column, labeled Iter, is the iteration number from 0 to 24. fmincon took 24
iterations to converge.

• The second column, labeled F-count, reports the cumulative number of times
Rosenbrock's function was evaluated. The final row shows an F-count of 84,
indicating that fmincon evaluated Rosenbrock's function 84 times in the process of
finding a minimum.

• The third column, labeled f(x), displays the value of the objective function. The final
value, 0.04567482, is the minimum that is reported in the Optimization app Run
solver and view results box, and at the end of the exit message in the command
window.

• The fourth column, Feasibility, is 0 for all iterations. This column shows the value
of the constraint function unitdisk at each iteration where the constraint is positive.
Since the value of unitdisk was negative in all iterations, every iteration satisfied
the constraint.

The other columns of the iteration table are described in “Iterative Display” on page
3-16.

1 Getting Started

1-12

Set Up a Linear Program

In this section...

“Convert a Problem to Solver Form” on page 1-12
“Model Description” on page 1-12
“Solution Method” on page 1-13
“Bibliography” on page 1-20

Convert a Problem to Solver Form

This example shows how to convert a problem from mathematical form into Optimization
Toolbox solver syntax. While the problem is a linear program, the techniques apply to all
solvers.

The variables and expressions in the problem represent a model of operating a chemical
plant, from an example in Edgar and Himmelblau [1]. There are two videos that describe
the problem.

• Optimization Modeling 1 shows the problem in pictorial form. It shows how to
generate the mathematical expressions of “Model Description” on page 1-12 from
the picture.

• Optimization Modeling 2 describes how to convert these mathematical expressions
into Optimization Toolbox solver syntax. This video shows how to solve the problem,
and how to interpret the results.

The remainder of this example is concerned solely with transforming the problem to
solver syntax. The example closely follows the video Optimization Modeling 2. The main
difference between the video and the example is that this example shows how to use
named variables, or index variables, which are similar to hash keys. This difference is in
“Combine Variables Into One Vector” on page 1-15.

Model Description

The video Optimization Modeling 1 suggests that one way to convert a problem into
mathematical form is to:

1 Get an overall idea of the problem

 Set Up a Linear Program

1-13

2 Identify the goal (maximizing or minimizing something)
3 Identify (name) variables
4 Identify constraints
5 Determine which variables you can control
6 Specify all quantities in mathematical notation
7 Check the model for completeness and correctness

For the meaning of the variables in this section, see the video Optimization Modeling 1.

The optimization problem is to minimize the objective function, subject to all the other
expressions as constraints.

The objective function is:
0.002614 HPS + 0.0239 PP + 0.009825 EP.

The constraints are:
2500 ≤ P1 ≤ 6250
I1 ≤ 192,000
C ≤ 62,000
I1 - HE1 ≤ 132,000
I1 = LE1 + HE1 + C

1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1

3000 ≤ P2 ≤ 9000
I2 ≤ 244,000
LE2 ≤ 142,000
I2 = LE2 + HE2

1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2

HPS = I1 + I2 + BF1

HPS = C + MPS + LPS

LPS = LE1 + LE2 + BF2

MPS = HE1 + HE2 + BF1 - BF2

P1 + P2 + PP ≥ 24,550
EP + PP ≥ 12,000
MPS ≥ 271,536
LPS ≥ 100,623
All variables are positive.

Solution Method

To solve the optimization problem, take the following steps.

1 Getting Started

1-14

1. “Choose a Solver” on page 1-14
2. “Combine Variables Into One Vector” on page 1-15
3. “Write Bound Constraints” on page 1-16
4. “Write Linear Inequality Constraints” on page 1-17
5. “Write Linear Equality Constraints” on page 1-18
6. “Write the Objective” on page 1-18
7. “Solve the Problem with linprog” on page 1-19
8. “Examine the Solution” on page 1-19

The steps are also shown in the video Optimization Modeling 2.

Choose a Solver

To find the appropriate solver for this problem, consult the “Optimization Decision Table”
on page 2-5. The table asks you to categorize your problem by type of objective
function and types of constraints. For this problem, the objective function is linear, and
the constraints are linear. The decision table recommends using the linprog solver.

As you see in “Problems Handled by Optimization Toolbox Functions” on page 2-14 or
the linprog function reference page, the linprog solver solves problems of the form

min

,

,

.
x

Tf x

A x b

Aeq x beq

lb x ub

 such that

◊ £

◊ =

£ £

Ï

Ì
Ô

Ó
Ô

• fTx means a row vector of constants f multiplying a column vector of variables x. In
other words,
fTx = f(1)x(1) + f(2)x(2) + ... + f(n)x(n),

where n is the length of f.
• A x ≤ b represents linear inequalities. A is a k-by-n matrix, where k is the number of

inequalities and n is the number of variables (size of x). b is a vector of length k. For
more information, see “Linear Inequality Constraints” on page 2-34.

• Aeq x = beq represents linear equalities. Aeq is an m-by-n matrix, where m is the
number of equalities and n is the number of variables (size of x). beq is a vector of
length m. For more information, see “Linear Equality Constraints” on page 2-35.

 Set Up a Linear Program

1-15

• lb ≤ x ≤ ub means each element in the vector x must be greater than the corresponding
element of lb, and must be smaller than the corresponding element of ub. For more
information, see “Bound Constraints” on page 2-33.

The syntax of the linprog solver, as shown in its function reference page, is

[x fval] = linprog(f,A,b,Aeq,beq,lb,ub);

The inputs to the linprog solver are the matrices and vectors in Equation 1-1.

Combine Variables Into One Vector

There are 16 variables in the equations of “Model Description” on page 1-12. Put
these variables into one vector. The name of the vector of variables is x in Equation 1-1.
Decide on an order, and construct the components of x out of the variables.

The following code constructs the vector using a cell array of strings. Each string is the
name of a variable.

variables = {'I1','I2','HE1','HE2','LE1','LE2','C','BF1',...

 'BF2','HPS','MPS','LPS','P1','P2','PP','EP'};

N = length(variables);

% create variables for indexing

for v = 1:N

 eval([variables{v},' = ', num2str(v),';']);

end

Executing these commands creates the following named variables in your workspace:

1 Getting Started

1-16

These named variables represent index numbers for the components of x. You do not
have to create named variables. The video Optimization Modeling 2 shows how to solve
the problem simply using the index numbers of the components of x.

Write Bound Constraints

There are four variables with lower bounds, and six with upper bounds in the equations
of “Model Description” on page 1-12. The lower bounds:
P1 ≥ 2500
P2 ≥ 3000
MPS ≥ 271,536
LPS ≥ 100,623.

Also, all the variables are positive, which means they have a lower bound of zero.

Create the lower bound vector lb as a vector of 0, then add the four other lower bounds.

 Set Up a Linear Program

1-17

lb = zeros(size(variables));

lb([P1,P2,MPS,LPS]) = ...

 [2500,3000,271536,100623];

The variables with upper bounds are:
P1 ≤ 6250
P2 ≤ 9000
I1 ≤ 192,000
I2 ≤ 244,000
C ≤ 62,000
LE2 ≤ 142000.

Create the upper bound vector as a vector of Inf, then add the six upper bounds.

ub = Inf(size(variables));

ub([P1,P2,I1,I2,C,LE2]) = ...

 [6250,9000,192000,244000,62000,142000];

Write Linear Inequality Constraints

There are three linear inequalities in the equations of “Model Description” on page
1-12:
I1 - HE1 ≤ 132,000
EP + PP ≥ 12,000
P1 + P2 + PP ≥ 24,550.

In order to have the equations in the form A x≤b, put all the variables on the left side of
the inequality. All these equations already have that form. Ensure that each inequality is
in “less than” form by multiplying through by –1 wherever appropriate:
I1 - HE1 ≤ 132,000
-EP - PP ≤ -12,000
-P1 - P2 - PP ≤ -24,550.

In your MATLAB workspace, create the A matrix as a 3-by-16 zero matrix, corresponding
to 3 linear inequalities in 16 variables. Create the b vector with three components.

A = zeros(3,16);

A(1,I1) = 1; A(1,HE1) = -1; b(1) = 132000;

A(2,EP) = -1; A(2,PP) = -1; b(2) = -12000;

A(3,[P1,P2,PP]) = [-1,-1,-1];

b(3) = -24550;

1 Getting Started

1-18

Write Linear Equality Constraints

There are eight linear equations in the equations of “Model Description” on page 1-12:
I2 = LE2 + HE2

LPS = LE1 + LE2 + BF2

HPS = I1 + I2 + BF1

HPS = C + MPS + LPS

I1 = LE1 + HE1 + C

MPS = HE1 + HE2 + BF1 - BF2

1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1

1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

In order to have the equations in the form Aeq x=beq, put all the variables on one side of
the equation. The equations become:
LE2 + HE2 - I2 = 0

LE1 + LE2 + BF2 - LPS = 0

I1 + I2 + BF1 - HPS = 0

C + MPS + LPS - HPS = 0

LE1 + HE1 + C - I1 = 0

HE1 + HE2 + BF1 - BF2 - MPS = 0

1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1 - 1359.8 I1 = 0

1267.8 HE2 + 1251.4 LE2 + 3413 P2 - 1359.8 I2 = 0.

Now write the Aeq matrix and beq vector corresponding to these equations. In your
MATLAB workspace, create the Aeq matrix as an 8-by-16 zero matrix, corresponding to 8
linear equations in 16 variables. Create the beq vector with eight components, all zero.

Aeq = zeros(8,16); beq = zeros(8,1);

Aeq(1,[LE2,HE2,I2]) = [1,1,-1];

Aeq(2,[LE1,LE2,BF2,LPS]) = [1,1,1,-1];

Aeq(3,[I1,I2,BF1,HPS]) = [1,1,1,-1];

Aeq(4,[C,MPS,LPS,HPS]) = [1,1,1,-1];

Aeq(5,[LE1,HE1,C,I1]) = [1,1,1,-1];

Aeq(6,[HE1,HE2,BF1,BF2,MPS]) = [1,1,1,-1,-1];

Aeq(7,[HE1,LE1,C,P1,I1]) = [1267.8,1251.4,192,3413,-1359.8];

Aeq(8,[HE2,LE2,P2,I2]) = [1267.8,1251.4,3413,-1359.8];

Write the Objective

The objective function is
fTx = 0.002614 HPS + 0.0239 PP + 0.009825 EP.

 Set Up a Linear Program

1-19

Write this expression as a vector f of multipliers of the x vector:

f = zeros(size(variables));

f([HPS PP EP]) = [0.002614 0.0239 0.009825];

Solve the Problem with linprog

You now have inputs required by the linprog solver. Call the solver and print the
outputs in formatted form:

[x fval] = linprog(f,A,b,Aeq,beq,lb,ub);

for d = 1:N

 fprintf('%12.2f \t%s\n',x(d),variables{d})

end

fval

The result:

Optimization terminated.

 136328.74 I1

 244000.00 I2

 128159.00 HE1

 143377.00 HE2

 0.00 LE1

 100623.00 LE2

 8169.74 C

 0.00 BF1

 0.00 BF2

 380328.74 HPS

 271536.00 MPS

 100623.00 LPS

 6250.00 P1

 7060.71 P2

 11239.29 PP

 760.71 EP

fval =

 1.2703e+003

Examine the Solution

The fval output gives the smallest value of the objective function at any feasible point.

The solution vector x is the point where the objective function has the smallest value.
Notice that:

1 Getting Started

1-20

• BF1, BF2, and LE1 are 0, their lower bounds.
• I2 is 244,000, its upper bound.
• The nonzero components of the f vector are

• HPS — 380,328.74
• PP — 11,239.29
• EP — 760.71

The video Optimization Modeling 2 gives interpretations of these characteristics in terms
of the original problem.

Bibliography

[1] Edgar, Thomas F., and David M. Himmelblau. Optimization of Chemical Processes.
McGraw-Hill, New York, 1988.

2

Setting Up an Optimization

• “Optimization Theory Overview” on page 2-2
• “Optimization Toolbox Solvers” on page 2-3
• “Choosing a Solver” on page 2-5
• “Writing Objective Functions” on page 2-17
• “Matrix Arguments” on page 2-30
• “Writing Constraints” on page 2-31
• “Objective and Nonlinear Constraints in the Same Function” on page 2-45
• “Passing Extra Parameters” on page 2-50
• “What Are Options?” on page 2-54
• “Options in Common Use: Tuning and Troubleshooting” on page 2-55
• “Set and Change Options” on page 2-56
• “Choose Between optimoptions and optimset” on page 2-57
• “View Options” on page 2-59
• “Tolerances and Stopping Criteria” on page 2-61
• “Checking Validity of Gradients or Jacobians” on page 2-65
• “Bibliography” on page 2-73

2 Setting Up an Optimization

2-2

Optimization Theory Overview

Optimization techniques are used to find a set of design parameters, x = {x1,x2,...,xn}, that
can in some way be defined as optimal. In a simple case this might be the minimization
or maximization of some system characteristic that is dependent on x. In a more
advanced formulation the objective function, f(x), to be minimized or maximized, might
be subject to constraints in the form of equality constraints, Gi(x) = 0 (i = 1,...,me);
inequality constraints, Gi(x) ≤ 0 (i = me + 1,...,m); and/or parameter bounds, xl, xu.

A General Problem (GP) description is stated as

min (),
x

f x

subject to

G x i m

G x i m m

i e

i e

() , ..., ,

() , ..., ,

= =

£ = +

0 1

0 1

where x is the vector of length n design parameters, f(x) is the objective function,
which returns a scalar value, and the vector function G(x) returns a vector of length m
containing the values of the equality and inequality constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size of
the problem in terms of the number of constraints and design variables but also on
characteristics of the objective function and constraints. When both the objective
function and the constraints are linear functions of the design variable, the problem is
known as a Linear Programming (LP) problem. Quadratic Programming (QP) concerns
the minimization or maximization of a quadratic objective function that is linearly
constrained. For both the LP and QP problems, reliable solution procedures are readily
available. More difficult to solve is the Nonlinear Programming (NP) problem in which
the objective function and constraints can be nonlinear functions of the design variables.
A solution of the NP problem generally requires an iterative procedure to establish a
direction of search at each major iteration. This is usually achieved by the solution of an
LP, a QP, or an unconstrained subproblem.

 Optimization Toolbox Solvers

2-3

Optimization Toolbox Solvers

There are four general categories of Optimization Toolbox solvers:

• Minimizers

This group of solvers attempts to find a local minimum of the objective function near
a starting point x0. They address problems of unconstrained optimization, linear
programming, quadratic programming, and general nonlinear programming.

• Multiobjective minimizers

This group of solvers attempts to either minimize the maximum value of a set of
functions (fminimax), or to find a location where a collection of functions is below
some prespecified values (fgoalattain).

• Equation solvers

This group of solvers attempts to find a solution to a scalar- or vector-valued
nonlinear equation f(x) = 0 near a starting point x0. Equation-solving can be
considered a form of optimization because it is equivalent to finding the minimum
norm of f(x) near x0.

• Least-Squares (curve-fitting) solvers

This group of solvers attempts to minimize a sum of squares. This type of problem
frequently arises in fitting a model to data. The solvers address problems of finding
nonnegative solutions, bounded or linearly constrained solutions, and fitting
parameterized nonlinear models to data.

For more information see “Problems Handled by Optimization Toolbox Functions” on
page 2-14. See “Optimization Decision Table” on page 2-5 for aid in choosing
among solvers for minimization.

Minimizers formulate optimization problems in the form

min (),
x

f x

possibly subject to constraints. f(x) is called an objective function. In general, f(x) is a
scalar function of type double, and x is a vector or scalar of type double. However,
multiobjective optimization, equation solving, and some sum-of-squares minimizers,
can have vector or matrix objective functions F(x) of type double. To use Optimization

2 Setting Up an Optimization

2-4

Toolbox solvers for maximization instead of minimization, see “Maximizing an Objective”
on page 2-28.

Write the objective function for a solver in the form of a function file or anonymous
function handle. You can supply a gradient ∇f(x) for many solvers, and you can supply
a Hessian for several solvers. See “Writing Objective Functions” on page 2-17.
Constraints have a special form, as described in “Writing Constraints” on page 2-31.

 Choosing a Solver

2-5

Choosing a Solver

In this section...

“Optimization Decision Table” on page 2-5
“Choosing the Algorithm” on page 2-7
“Problems Handled by Optimization Toolbox Functions” on page 2-14

Optimization Decision Table

The following table is designed to help you choose a solver. It does not address
multiobjective optimization or equation solving. There are more details on all the solvers
in “Problems Handled by Optimization Toolbox Functions” on page 2-14.

Use the table as follows:

1 Identify your objective function as one of five types:

• Linear
• Quadratic
• Sum-of-squares (Least squares)
• Smooth nonlinear
• Nonsmooth

2 Identify your constraints as one of five types:

• None (unconstrained)
• Bound
• Linear (including bound)
• General smooth
• Discrete (integer)

3 Use the table to identify a relevant solver.

In this table:

• * means relevant solvers are found in Global Optimization Toolbox functions (licensed
separately from Optimization Toolbox solvers).

2 Setting Up an Optimization

2-6

• fmincon applies to most smooth objective functions with smooth constraints. It is
not listed as a preferred solver for least squares or linear or quadratic programming
because the listed solvers are usually more efficient.

• The table has suggested functions, but it is not meant to unduly restrict your choices.
For example, fmincon can be effective on some nonsmooth problems.

• The Global Optimization Toolbox ga function can address mixed-integer programming
problems.

Solvers by Objective and Constraint

Objective TypeConstraint Type

Linear Quadratic Least Squares Smooth
nonlinear

Nonsmooth

None n/a (f = const,
or min = -•)

quadprog,
Information

\,
lsqcurvefit,
lsqnonlin,
Information

fminsearch,
fminunc,
Information

fminsearch, *

Bound linprog,
Information

quadprog,
Information

lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg,
Information

fminbnd,
fmincon,
fseminf,
Information

fminbnd, *

Linear linprog,
Information

quadprog,
Information

lsqlin,
Information

fmincon,
fseminf,
Information

*

General
smooth

fmincon,
Information

fmincon,
Information

fmincon,
Information

fmincon,
fseminf,
Information

*

Discrete intlinprog,
Information

* * * *

Note: This table does not list multiobjective solvers nor equation solvers. See “Problems
Handled by Optimization Toolbox Functions” on page 2-14 for a complete list of
problems addressed by Optimization Toolbox functions.

 Choosing a Solver

2-7

Note: Some solvers have several algorithms. For help choosing, see “Choosing the
Algorithm” on page 2-7.

Choosing the Algorithm

• “fmincon Algorithms” on page 2-7
• “fsolve Algorithms” on page 2-8
• “fminunc Algorithms” on page 2-9
• “Least Squares Algorithms” on page 2-9
• “Linear Programming Algorithms” on page 2-10
• “Quadratic Programming Algorithms” on page 2-11
• “Large-Scale vs. Medium-Scale Algorithms” on page 2-12
• “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12

fmincon Algorithms

fmincon has four algorithm options:

• 'interior-point' (default)
• 'trust-region-reflective'

• 'sqp'

• 'active-set'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• Use the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

• To run an optimization again to obtain more speed on small- to medium-sized
problems, try 'sqp' next, and 'active-set' last.

• Use 'trust-region-reflective' when applicable. Your problem must have:
objective function includes gradient, only bounds, or only linear equality constraints
(but not both).

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12.

2 Setting Up an Optimization

2-8

Reasoning Behind the Recommendations

• 'interior-point' handles large, sparse problems, as well as small dense problems.
The algorithm satisfies bounds at all iterations, and can recover from NaN or Inf
results. It is a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms”
on page 2-12. The algorithm can use special techniques for large-scale problems.
For details, see Interior-Point Algorithm in fmincon options.

• 'sqp' satisfies bounds at all iterations. The algorithm can recover from NaN or
Inf results. It is not a large-scale algorithm; see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-12.

• 'active-set' can take large steps, which adds speed. The algorithm is effective
on some problems with nonsmooth constraints. It is not a large-scale algorithm; see
“Large-Scale vs. Medium-Scale Algorithms” on page 2-12.

• 'trust-region-reflective' requires you to provide a gradient, and allows only
bounds or linear equality constraints, but not both. Within these limitations, the
algorithm handles both large sparse problems and small dense problems efficiently.
It is a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms” on page
2-12. The algorithm can use special techniques to save memory usage, such as a
Hessian multiply function. For details, see Trust-Region-Reflective Algorithm in
fmincon options.

fsolve Algorithms

fsolve has three algorithms:

• 'trust-region-dogleg' (default)
• 'trust-region-reflective'

• 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• Use the 'trust-region-dogleg' algorithm first.

For help if fsolve fails, see “When the Solver Fails” on page 4-3 or “When the
Solver Might Have Succeeded” on page 4-15.

• To solve equations again if you have a Jacobian multiply function, or want to tune
the internal algorithm (see Trust-Region-Reflective Algorithm in fsolve
options), try 'trust-region-reflective'.

 Choosing a Solver

2-9

Recommendations

• Try timing all the algorithms, including 'levenberg-marquardt', to find the
algorithm that works best on your problem.

Reasoning Behind the Recommendations

• 'trust-region-dogleg' is the only algorithm that is specially designed to solve
nonlinear equations. The others attempt to minimize the sum of squares of the
function.

• The 'trust-region-reflective' algorithm is effective on sparse problems. It can
use special techniques such as a Jacobian multiply function for large-scale problems.

fminunc Algorithms

fminunc has two algorithms:

• 'trust-region' (formerly LargeScale = 'on'), the default
• 'quasi-newton' (formerly LargeScale = 'off')

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If your objective function includes a gradient, use 'Algorithm' = 'trust-
region', and set the GradObj option to 'on'.

• Otherwise, use 'Algorithm' = 'quasi-newton'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

Least Squares Algorithms

lsqlin

lsqlin has three algorithms:

• 'trust-region-reflective' (formerly LargeScale = 'on'), the default
• 'active-set' (formerly LargeScale = 'off')

2 Setting Up an Optimization

2-10

• 'interior-point'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If you have no constraints or only bound constraints, use 'trust-region-
reflective'.

• If you have linear constraints, try 'interior-point' first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

lsqcurvefit and lsqnonlin

lsqcurvefit and lsqnonlin have two algorithms:

• 'trust-region-reflective' (default)
• 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If you have no constraints or only bound constraints, use 'trust-region-
reflective'.

• If your problem is underdetermined (fewer equations than dimensions), use
'levenberg-marquardt'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

Linear Programming Algorithms

linprog has five algorithms:

• 'interior-point-legacy', the default
• 'interior-point'

 Choosing a Solver

2-11

• 'dual-simplex'

• 'simplex'

• 'active-set'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

Use the 'interior-point' algorithm or the 'dual-simplex' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12.

Reasoning Behind the Recommendations

• The 'interior-point-legacy', 'interior-point' and 'dual-simplex'
algorithms are large-scale algorithms, while 'simplex' and 'active-set' are not.
See “Large-Scale vs. Medium-Scale Algorithms” on page 2-12.

• Often, the 'interior-point' and 'dual-simplex' algorithms are faster and use
less memory than the other algorithms.

• The default 'interior-point-legacy' is similar to 'interior-point', but
'interior-point-legacy' can be slower, less robust, or use more memory.

• The 'active-set' and 'simplex' algorithms will be removed in a future release.

Quadratic Programming Algorithms

quadprog has three algorithms:

• 'interior-point-convex' (default)
• 'trust-region-reflective'

• 'active-set' (will be removed in a future release).

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If you have a convex problem, or if you don't know whether your problem is convex,
use 'interior-point-convex'.

2 Setting Up an Optimization

2-12

Recommendations

• If you have a nonconvex problem with only bounds, or with only linear equalities, use
'trust-region-reflective'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12.

Large-Scale vs. Medium-Scale Algorithms

An optimization algorithm is large scale when it uses linear algebra that does not need
to store, nor operate on, full matrices. This may be done internally by storing sparse
matrices, and by using sparse linear algebra for computations whenever possible.
Furthermore, the internal algorithms either preserve sparsity, such as a sparse Cholesky
decomposition, or do not generate matrices, such as a conjugate gradient method.

In contrast, medium-scale methods internally create full matrices and use dense linear
algebra. If a problem is sufficiently large, full matrices take up a significant amount of
memory, and the dense linear algebra may require a long time to execute.

Don't let the name “large scale” mislead you; you can use a large-scale algorithm on a
small problem. Furthermore, you do not need to specify any sparse matrices to use a
large-scale algorithm. Choose a medium-scale algorithm to access extra functionality,
such as additional constraint types, or possibly for better performance.

Potential Inaccuracy with Interior-Point Algorithms

Interior-point algorithms in fmincon, quadprog, and linprog have many good
characteristics, such as low memory usage and the ability to solve large problems
quickly. However, their solutions can be slightly less accurate than those from other
algorithms. The reason for this potential inaccuracy is that the (internally calculated)
barrier function keeps iterates away from inequality constraint boundaries.

For most practical purposes, this inaccuracy is usually quite small.

To reduce the inaccuracy, try to:

• Rerun the solver with smaller TolX, TolFun, and possibly TolCon tolerances
(but keep the tolerances sensible.) See “Tolerances and Stopping Criteria” on page
2-61).

 Choosing a Solver

2-13

• Run a different algorithm, starting from the interior-point solution. This can fail,
because some algorithms can use excessive memory or time, and some linprog and
quadprog algorithms do not accept an initial point.

For example, try to minimize the function x when bounded below by 0. Using the
fmincon interior-point algorithm:

options = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');

x = fmincon(@(x)x,1,[],[],[],[],0,[],[],options)

x =

 2.0000e-08

Using the fmincon sqp algorithm:

options.Algorithm = 'sqp';

x2 = fmincon(@(x)x,1,[],[],[],[],0,[],[],options)

x2 =

 0

Similarly, solve the same problem using the linprog interior-point algorithm:

opts = optimoptions(@linprog,'Display','off','Algorithm','interior-point');

x = linprog(1,[],[],[],[],0,[],1,opts)

x =

 2.0833e-13

Using the linprog simplex algorithm:

opts.Algorithm = 'simplex';

x2 = linprog(1,[],[],[],[],0,[],1,opts)

x2 =

 0

In these cases, the interior-point algorithms are less accurate, but the answers are
quite close to the correct answer.

2 Setting Up an Optimization

2-14

Problems Handled by Optimization Toolbox Functions

The following tables show the functions available for minimization, equation solving,
multiobjective optimization, and solving least-squares or data-fitting problems.

Minimization Problems

Type Formulation Solver

Scalar minimization min ()
x

f x

such that lb < x < ub (x is scalar)

fminbnd

Unconstrained minimization min ()
x

f x fminunc,
fminsearch

Linear programming
min

x

Tf x

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

linprog

Mixed-integer linear
programming min

x

Tf x

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub,
x(intcon) is integer-valued.

intlinprog

Quadratic programming
min

x

T T
x Hx c x

1

2
+

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

quadprog

Constrained minimization min ()
x

f x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq,
lb ≤ x ≤ ub

fmincon

Semi-infinite minimization min ()
x

f x

such that K(x,w) ≤ 0 for all w, c(x) ≤ 0, ceq(x) = 0,
A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

fseminf

 Choosing a Solver

2-15

Multiobjective Problems

Type Formulation Solver

Goal attainment min
,x g

g

such that F(x) – w·γ ≤ goal, c(x) ≤ 0, ceq(x) = 0,
A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

fgoalattain

Minimax minmax ()
x i

i
F x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq,
lb ≤ x ≤ ub

fminimax

Equation Solving Problems

Type Formulation Solver

Linear equations C·x = d, n equations, n variables \ (matrix left
division)

Nonlinear equation of one
variable

f(x) = 0 fzero

Nonlinear equations F(x) = 0, n equations, n variables fsolve

Least-Squares (Model-Fitting) Problems

Type Formulation Solver

Linear least-squares
min

x

C x d
1

2
2

2
◊ -

m equations, n variables

\ (matrix left
division)

Nonnegative linear-least-
squares min

x

C x d
1

2
2

2
◊ -

such that x ≥ 0

lsqnonneg

Constrained linear-least-
squares min

x

C x d
1

2
2

2
◊ -

lsqlin

2 Setting Up an Optimization

2-16

Type Formulation Solver

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub
Nonlinear least-squares

min () min ()
x x

i

i

F x F x
2

2 2
= Â

such that lb ≤ x ≤ ub

lsqnonlin

Nonlinear curve fitting
min (,)

x
F x xdata ydata-

2

2

such that lb ≤ x ≤ ub

lsqcurvefit

 Writing Objective Functions

2-17

Writing Objective Functions

In this section...

“Types of Objective Functions” on page 2-17
“Writing Scalar Objective Functions” on page 2-18
“Writing Vector and Matrix Objective Functions” on page 2-25
“Writing Objective Functions for Linear or Quadratic Problems” on page 2-28
“Maximizing an Objective” on page 2-28

Types of Objective Functions

Many Optimization Toolbox solvers minimize a scalar function of a multidimensional
vector. The objective function is the function the solvers attempt to minimize. Several
solvers accept vector-valued objective functions, and some solvers use objective functions
you specify by vectors or matrices.

Objective Type Solvers How to Write Objectives

Scalar fmincon

fminunc

fminbnd

fminsearch

fseminf

fzero

“Writing Scalar Objective Functions” on
page 2-18

Nonlinear least squares lsqcurvefit

lsqnonlin

Multivariable equation
solving

fsolve

Multiobjective fgoalattain

fminimax

“Writing Vector and Matrix Objective
Functions” on page 2-25

2 Setting Up an Optimization

2-18

Objective Type Solvers How to Write Objectives

Linear programming linprog

Mixed-integer linear
programming

intlinprog

Linear least squares lsqlin

lsqnonneg

Quadratic programming quadprog

“Writing Objective Functions for Linear or
Quadratic Problems” on page 2-28

Writing Scalar Objective Functions

• “Function Files” on page 2-18
• “Anonymous Function Objectives” on page 2-20
• “Including Derivatives” on page 2-20

Function Files

A scalar objective function file accepts one input, say x, and returns one scalar output,
say f. The input x can be a scalar, vector, or matrix. A function file can return more
outputs (see “Including Derivatives” on page 2-20).

For example, suppose your objective is a function of three variables, x, y, and z:
f(x) = 3*(x – y)4 + 4*(x + z)2 / (1 + x2 + y2 + z2) + cosh(x – 1) + tanh(y + z).

1 Write this function as a file that accepts the vector xin = [x;y;z] and returns f:

function f = myObjective(xin)

f = 3*(xin(1)-xin(2))^4 + 4*(xin(1)+xin(3))^2/(1+norm(xin)^2) ...

 + cosh(xin(1)-1) + tanh(xin(2)+xin(3));

2 Save it as a file named myObjective.m to a folder on your MATLAB path.
3 Check that the function evaluates correctly:

myObjective([1;2;3])

ans =

 9.2666

For information on how to include extra parameters, see “Passing Extra Parameters”
on page 2-50. For more complex examples of function files, see “Minimization with

 Writing Objective Functions

2-19

Gradient and Hessian Sparsity Pattern” on page 6-17 or “Minimization with Bound
Constraints and Banded Preconditioner” on page 6-68.

Local Functions and Nested Functions

Functions can exist inside other files as local functions or nested functions. Using local
functions or nested functions can lower the number of distinct files you save. Using
nested functions also lets you access extra parameters, as shown in “Nested Functions”
on page 2-52.

For example, suppose you want to minimize the myObjective.m objective function,
described in “Function Files” on page 2-18, subject to the ellipseparabola.m
constraint, described in “Nonlinear Constraints” on page 2-35. Instead of writing
two files, myObjective.m and ellipseparabola.m, write one file that contains both
functions as local functions:

function [x fval] = callObjConstr(x0,options)

% Using a local function for just one file

if nargin < 2

 options = optimoptions('fmincon','Algorithm','interior-point');

end

[x fval] = fmincon(@myObjective,x0,[],[],[],[],[],[], ...

 @ellipseparabola,options);

function f = myObjective(xin)

f = 3*(xin(1)-xin(2))^4 + 4*(xin(1)+xin(3))^2/(1+sum(xin.^2)) ...

 + cosh(xin(1)-1) + tanh(xin(2)+xin(3));

function [c,ceq] = ellipseparabola(x)

c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;

c(2) = x(1)^2 - x(2) - 1;

ceq = [];

Solve the constrained minimization starting from the point [1;1;1]:

[x fval] = callObjConstr(ones(3,1))

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the default

value of the function tolerance, and constraints are satisfied

2 Setting Up an Optimization

2-20

to within the default value of the constraint tolerance.

x =

 1.1835

 0.8345

 -1.6439

fval =

 0.5383

Anonymous Function Objectives

Use anonymous functions to write simple objective functions. For more information
about anonymous functions, see “What Are Anonymous Functions?” in the MATLAB
Programming Fundamentals documentation. Rosenbrock's function is simple enough to
write as an anonymous function:

anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);

Check that anonrosen evaluates correctly at [-1 2]:

anonrosen([-1 2])

ans =

 104

Minimizing anonrosen with fminunc yields the following results:

options = optimoptions(@fminunc,'Algorithm','quasi-newton');

[x fval] = fminunc(anonrosen,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient

is less than the default value of the function tolerance.

x =

 1.0000

 1.0000

fval =

 1.2262e-10

Including Derivatives

For fmincon and fminunc, you can include gradients in the objective function. You can
also include Hessians, depending on the algorithm. The Hessian matrix Hi,j(x) = ∂2f/∂xi∂xj.

 Writing Objective Functions

2-21

The following table shows which algorithms can use gradients and Hessians.

Solver Algorithm Gradient Hessian

active-set Optional No
interior-point Optional Optional separate function (see

“Hessian” on page 14-60)
sqp Optional No

fmincon

trust-region-reflective Required Optional
trust-region Required Optionalfminunc

quasi-newton Optional No

• “Benefits of Including Derivatives” on page 2-21
• “Choose Input Hessian for interior-point fmincon” on page 2-21
• “How to Include Derivatives” on page 2-22

Benefits of Including Derivatives

If you do not provide gradients, solvers estimate gradients via finite differences. If you
provide gradients, your solver need not perform this finite difference estimation, so can
save time and be more accurate. Furthermore, solvers use an approximate Hessian,
which can be far from the true Hessian. Providing a Hessian can yield a solution in fewer
iterations.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but, for this x, finite differences around x always
lead to an infeasible point. Suppose further that the objective function at an infeasible
point returns a complex output, Inf, NaN, or error. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed. To obtain this benefit, you
might also need to include the gradient of a nonlinear constraint function, and set the
GradConstr option to 'on'. See “Nonlinear Constraints” on page 2-35.
Choose Input Hessian for interior-point fmincon

The fmincon interior-point algorithm has many options for selecting an input
Hessian. For syntax details, see “Hessian” on page 14-60. Here are the options, along
with estimates of their relative characteristics.

Hessian Relative Memory Usage Relative Efficiency

'bfgs' (default) High (for large problems) High

2 Setting Up an Optimization

2-22

Hessian Relative Memory Usage Relative Efficiency

'lbfgs' Low to Moderate Moderate
'fin-diff-grads' Low Moderate
'user-supplied' with
'HessMult'

Low (can depend on your
code)

Moderate

'user-supplied' with
'HessFcn'

? (depends on your code) High (depends on your code)

Use the default 'bfgs' Hessian unless you

• Run out of memory — Try 'lbfgs' instead of 'bfgs'. If you can provide your own
gradients, try 'fin-diff-grads', and set the GradObj and GradConstr options to
'on'.

• Want more efficiency — Provide your own gradients and Hessian. See “fmincon
Interior-Point Algorithm with Analytic Hessian” on page 6-50 and “Symbolic Math
Toolbox Calculates Gradients and Hessians” on page 6-80.

The reason 'lbfgs' has only moderate efficiency is twofold. It has relatively expensive
Sherman-Morrison updates. And the resulting iteration step can be somewhat inaccurate
due to the 'lbfgs' limited memory.

The reason 'fin-diff-grads' and HessMult have only moderate efficiency is that
they use a conjugate gradient approach. They accurately estimate the Hessian of the
objective function, but they do not generate the most accurate iteration step. For more
information, see “fmincon Interior Point Algorithm” on page 6-37, and its discussion
of the LDL approach and the conjugate gradient approach to solving Equation 6-52.
How to Include Derivatives

1 Write code that returns:

• The objective function (scalar) as the first output
• The gradient (vector) as the second output
• Optionally, the Hessian (matrix) as the third output

2 Set the GradObj option to 'on' with optimoptions.
3 Optionally, set the Hessian option to 'on' or 'user-supplied'.

For the fmincon interior-point solver, set the Hessian option to 'user-
supplied' and set the 'HessFcn' option to @hessianfcn, where hessianfcn is a

 Writing Objective Functions

2-23

function that computes the Hessian of the Lagrangian. For details, see “Hessian” on
page 14-60. For an example, see “fmincon Interior-Point Algorithm with Analytic
Hessian” on page 6-50.

4 Optionally, check if your gradient function matches a finite-difference
approximation. See “Checking Validity of Gradients or Jacobians” on page 2-65.

Tip For most flexibility, write conditionalized code. Conditionalized means that the
number of function outputs can vary, as shown in the following example. Conditionalized
code does not error depending on the value of the GradObj or Hessian option.
Unconditionalized code requires you to set these options appropriately.

For example, consider Rosenbrock's function

f x x x x() () ,= -() + -100 12 1
2

2

1
2

which is described and plotted in “Solve a Constrained Nonlinear Problem” on page 1-3.
The gradient of f(x) is

—f x
x x x x

x x
() ,=

- -() - -()

-()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

400 2 1

200

2 1
2

1 1

2 1
2

and the Hessian H(x) is

H x
x x x

x
() .=

- + -

-

È

Î
Í
Í

˘

˚
˙
˙

1200 400 2 400

400 200

1
2

2 1

1

rosenthree is an unconditionalized function that returns the Rosenbrock function with
its gradient and Hessian:

function [f g H] = rosenthree(x)

% Calculate objective f, gradient g, Hessian H

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

2 Setting Up an Optimization

2-24

 -400*x(1), 200];

rosenboth is a conditionalized function that returns whatever the solver requires:

function [f g H] = rosenboth(x)

% Calculate objective f

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required

 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

 if nargout > 2 % Hessian required

 H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

 -400*x(1), 200];

 end

end

nargout checks the number of arguments that a calling function specifies. See “Find
Number of Function Arguments” in the MATLAB Programming Fundamentals
documentation.

The fminunc solver, designed for unconstrained optimization, allows you to minimize
Rosenbrock's function. Tell fminunc to use the gradient and Hessian by setting
options:

options = optimoptions(@fminunc,'Algorithm','trust-region',...

 'GradObj','on','Hessian','on');

Run fminunc starting at [-1;2]:

[x fval] = fminunc(@rosenboth,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient

is less than the default value of the function tolerance.

x =

 1.0000

 1.0000

fval =

 1.9310e-017

 Writing Objective Functions

2-25

If you have a Symbolic Math Toolbox™ license, you can calculate gradients and Hessians
automatically, as described in “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-80.

Writing Vector and Matrix Objective Functions

Some solvers, such as fsolve and lsqcurvefit, have objective functions that are
vectors or matrices. The main difference in usage between these types of objective
functions and scalar objective functions is the way to write their derivatives. The first-
order partial derivatives of a vector-valued or matrix-valued function is called a Jacobian;
the first-order partial derivatives of a scalar function is called a gradient.

• “Jacobians of Vector Functions” on page 2-25
• “Jacobians of Matrix Functions” on page 2-26
• “Jacobians with Matrix-Valued Independent Variables” on page 2-27

Jacobians of Vector Functions

If x is a vector of independent variables, and F(x) is a vector function, the Jacobian J(x) is

J x
F x

x
ij

i

j

()
()

.=
∂

∂

If F has m components, and x has k components, J is an m-by-k matrix.

For example, if

F x
x x x

x x x
()

sin
,=

+

+ -()
È

Î
Í
Í

˘

˚
˙
˙

1
2

2 3

1 2 32 3

then J(x) is

J x
x x x

x x x x x x x x x
()

cos cos cos
=

+ -() + -() - + -

2

2 3 2 2 3 3 2 3

1 3 2

1 2 3 1 2 3 1 2 3(()
È

Î
Í

˘

˚
˙.

The function file associated with this example is:

function [F jacF] = vectorObjective(x)

F = [x(1)^2 + x(2)*x(3);

2 Setting Up an Optimization

2-26

 sin(x(1) + 2*x(2) - 3*x(3))];

if nargout > 1 % need Jacobian

 jacF = [2*x(1),x(3),x(2);

 cos(x(1)+2*x(2)-3*x(3)),2*cos(x(1)+2*x(2)-3*x(3)), ...

 -3*cos(x(1)+2*x(2)-3*x(3))];

end

Jacobians of Matrix Functions

The Jacobian of a matrix F(x) is defined by changing the matrix to a vector, column by
column. For example, rewrite the matrix

F

F F

F F

F F

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12

21 22

31 32

as a vector f:

f

F

F

F

F

F

F

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

11

21

31

12

22

32

.

The Jacobian of F is as the Jacobian of f,

J
f

x
ij

i

j

=
∂

∂
.

If F is an m-by-n matrix, and x is a k-vector, the Jacobian is an mn-by-k matrix.

For example, if

F x

x x x x

x x x x

x x x

() / ,=

+

-

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 2 1
3

2
2

2 1
4

2 1

2
2

1
3

2
4

3

5

4

 Writing Objective Functions

2-27

then the Jacobian of F is

J x

x x

x

x

x x

x x x

x x

()

/ /

=

-

-

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

2 1

1
3

2

1
2

2

2 1
2

1

1
2

2
3

4 5

0 2

3 6

1

3 4

˘̆

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

.

Jacobians with Matrix-Valued Independent Variables

If x is a matrix, define the Jacobian of F(x) by changing the matrix x to a vector, column
by column. For example, if

X
x x

x x
=

È

Î
Í

˘

˚
˙

11 12

21 22

,

then the gradient is defined in terms of the vector

x

x

x

x

x

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

11

21

12

22

.

With

F

F F

F F

F F

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12

21 22

31 32

,

and with f the vector form of F as above, the Jacobian of F(X) is defined as the Jacobian
of f(x):

J
f

x
ij

i

j

=
∂

∂
.

2 Setting Up an Optimization

2-28

So, for example,

J
f

x

F

X
J

f

x

F

X
(,)

()

()
, (,)

()

()
3 2

3

2
5 4

5

4

31

21

22

22

=
∂

∂
=

∂

∂
=

∂

∂
=

∂

∂
 and ..

If F is an m-by-n matrix and x is a j-by-k matrix, then the Jacobian is an mn-by-jk
matrix.

Writing Objective Functions for Linear or Quadratic Problems

The following solvers handle linear or quadratic objective functions:

• linprog and intlinprog: minimize
f'x = f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input the vector f for the objective. See the examples in “Linear Programming and
Mixed-Integer Linear Programming”.

• lsqlin and lsqnonneg: minimize
∥Cx - d∥.

Input the matrix C and the vector d for the objective. See “Linear Least Squares with
Bound Constraints” on page 10-21.

• quadprog: minimize
1/2 * x'Hx + f'x
= 1/2 * (x(1)*H(1,1)*x(1) + 2*x(1)*H(1,2)*x(2) +...
+ x(n)*H(n,n)*x(n)) + f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input both the vector f and the symmetric matrix H for the objective. See “Quadratic
Programming”.

Maximizing an Objective

All solvers attempt to minimize an objective function. If you have a maximization
problem, that is, a problem of the form

max (),
x

f x

then define g(x) = –f(x), and minimize g.

 Writing Objective Functions

2-29

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminunc(@(x)-tan(cos(x)),5)

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

x =

 6.2832

fval =

 -1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at x = 6.2832.
This answer is correct since, to five digits, the maximum is tan(1) = 1.5574, which occurs
at x = 2π = 6.2832.

2 Setting Up an Optimization

2-30

Matrix Arguments

Solvers accept matrix initial point x0, where matrix means an array of any size. They
also accept matrix bounds lb and ub. Here’s how solvers handle matrix arguments.

• Internally, solvers convert matrix arguments into vectors before processing. For
example, x0 becomes x0(:). For an explanation of this syntax, see the A(:) entry in
colon.

• For output, solvers reshape the solution x to the same size as the input x0.
• When x0 is a matrix, solvers pass x as a matrix of the same size as x0 to both the

objective function and to any nonlinear constraint function.
• Linear constraints, though, take x in vector form, x(:). In other words, a linear

constraint of the form
A*x ≤ b or Aeq*x = beq

takes x as a vector, not a matrix. Ensure that your matrix A or Aeq has the same
number of columns as x0 has elements, or the solver will error.

 Writing Constraints

2-31

Writing Constraints

In this section...

“Types of Constraints” on page 2-31
“Iterations Can Violate Constraints” on page 2-32
“Bound Constraints” on page 2-33
“Linear Inequality Constraints” on page 2-34
“Linear Equality Constraints” on page 2-35
“Nonlinear Constraints” on page 2-35
“Or Instead of And Constraints” on page 2-38
“How to Use All Types of Constraints” on page 2-43

Types of Constraints

Optimization Toolbox solvers have special forms for constraints:

• “Bound Constraints” on page 2-33 — Lower and upper bounds on individual
components: x ≥ l and x ≤ u.

• “Linear Inequality Constraints” on page 2-34 — A·x ≤ b. A is an m-by-n matrix,
which represents m constraints for an n-dimensional vector x. b is m-dimensional.

• “Linear Equality Constraints” on page 2-35 — Aeq·x = beq. Equality constraints
have the same form as inequality constraints.

• “Nonlinear Constraints” on page 2-35 — c(x) ≤ 0 and ceq(x) = 0. Both c and ceq are
scalars or vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints are of the form ci(x)
≤ 0 or A x ≤ b. Express greater-than constraints as less-than constraints by multiplying
them by –1. For example, a constraint of the form ci(x) ≥ 0 is equivalent to the constraint
–ci(x) ≤ 0. A constraint of the form A·x ≥ b is equivalent to the constraint –A·x ≤ –b. For
more information, see “Linear Inequality Constraints” on page 2-34 and “Nonlinear
Constraints” on page 2-35.

You can sometimes write constraints in several ways. For best results, use the lowest
numbered constraints possible:

1 Bounds

2 Setting Up an Optimization

2-32

2 Linear equalities
3 Linear inequalities
4 Nonlinear equalities
5 Nonlinear inequalities

For example, with a constraint 5 x ≤ 20, use a bound x ≤ 4 instead of a linear inequality
or nonlinear inequality.

For information on how to pass extra parameters to constraint functions, see “Passing
Extra Parameters” on page 2-50.

Iterations Can Violate Constraints

Be careful when writing your objective and constraint functions. Intermediate iterations
can lead to points that are infeasible (do not satisfy constraints). If you write objective or
constraint functions that assume feasibility, these functions can error or give unexpected
results.

For example, if you take a square root or logarithm of x, and x < 0, the result is not real.
You can try to avoid this error by setting 0 as a lower bound on x. Nevertheless, an
intermediate iteration can violate this bound.

Algorithms That Satisfy Bound Constraints

Some solver algorithms satisfy bound constraints at every iteration:

• fmincon interior-point, sqp, and trust-region-reflective algorithms
• lsqcurvefit trust-region-reflective algorithm
• lsqnonlin trust-region-reflective algorithm
• fminbnd

Note: If you set a lower bound equal to an upper bound, iterations can violate these
constraints.

Solvers and Algorithms That Can Violate Bound Constraints

The following solvers and algorithms can violate bound constraints at intermediate
iterations:

 Writing Constraints

2-33

• fmincon active-set algorithm
• fgoalattain solver
• fminimax solver
• fseminf solver

Bound Constraints

Lower and upper bounds limit the components of the solution x.

If you know bounds on the location of an optimum, you can obtain faster and more
reliable solutions by explicitly including these bounds in your problem formulation.

Give bounds as vectors with the same length as x, or as matrices with the same number
of elements as x.

• If a particular component has no lower bound, use -Inf as the bound; similarly, use
Inf if a component has no upper bound.

• If you have only bounds of one type (upper or lower), you do not need to write the
other type. For example, if you have no upper bounds, you do not need to supply a
vector of Infs.

• If only the first m out of n components have bounds, then you need only supply a
vector of length m containing bounds. However, this shortcut causes solvers to throw
a warning.

For example, suppose your bounds are:
x3 ≥ 8
x2 ≤ 3.
Write the constraint vectors as
l = [-Inf; -Inf; 8]

u = [Inf; 3] (throws a warning) or u = [Inf; 3; Inf].

Tip Use Inf or -Inf instead of a large, arbitrary bound to lower memory usage and
increase solver speed. See “Use Inf Instead of a Large, Arbitrary Bound” on page
4-13.

You need not give gradients for bound constraints; solvers calculate them automatically.
Bounds do not affect Hessians.

2 Setting Up an Optimization

2-34

For a more complex example of bounds, see “Set Up a Linear Program” on page 1-12.

Linear Inequality Constraints

Linear inequality constraints have the form A·x ≤ b. When A is m-by-n, there are m
constraints on a variable x with n components. You supply the m-by-n matrix A and the
m-component vector b.

Even if you pass an initial point x0 as a matrix, solvers pass the current point x as a
column vector to linear constraints. See “Matrix Arguments” on page 2-30.

For example, suppose that you have the following linear inequalities as constraints:
x1 + x3 ≤ 4,
2x2 – x3 ≥ –2,
x1 – x2 + x3 – x4 ≥ 9.

Here m = 3 and n = 4.

Write these using the following matrix A and vector b:

A

b

= -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 1 0

0 2 1 0

1 1 1 1

4

2

9

,

.

Notice that the “greater than” inequalities were first multiplied by –1 in order to get
them into “less than” inequality form. In MATLAB syntax:

A = [1 0 1 0;

 0 -2 1 0;

 -1 1 -1 1];

b = [4;2;-9];

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians.

For a more complex example of linear constraints, see “Set Up a Linear Program” on
page 1-12.

 Writing Constraints

2-35

Linear Equality Constraints

Linear equalities have the form Aeq·x = beq, which represents m equations with n-
component vector x. You supply the m-by-n matrix Aeq and the m-component vector beq.

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians. The form of this type of
constraint is the same as for “Linear Inequality Constraints” on page 2-34.

Nonlinear Constraints

Nonlinear inequality constraints have the form c(x) ≤ 0, where c is a vector of constraints,
one component for each constraint. Similarly, nonlinear equality constraints are of the
form ceq(x) = 0.

Note: Nonlinear constraint functions must return both c and ceq, the inequality and
equality constraint functions, even if they do not both exist. Return empty [] for a
nonexistent constraint.

For example, suppose that you have the following inequalities as constraints:

x x

x x

1
2

2
2

2 1
2

9 4
1

1

+ £

≥ -

,

.

Write these constraints in a function file as follows:

function [c,ceq]=ellipseparabola(x)

c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;

c(2) = x(1)^2 - x(2) - 1;

ceq = [];

end

ellipseparabola returns empty [] for ceq, the nonlinear equality function. Also, both
inequalities were put into ≤ 0 form.

Including Gradients in Constraint Functions

If you provide gradients for c and ceq, your solver can run faster and give more reliable
results.

2 Setting Up an Optimization

2-36

Providing a gradient has another advantage. A solver can reach a point x such that x is
feasible, but finite differences around x always lead to an infeasible point. In this case, a
solver can fail or halt prematurely. Providing a gradient allows a solver to proceed.

To include gradient information, write a conditionalized function as follows:

function [c,ceq,gradc,gradceq]=ellipseparabola(x)

c(1) = x(1)^2/9 + x(2)^2/4 - 1;

c(2) = x(1)^2 - x(2) - 1;

ceq = [];

if nargout > 2

 gradc = [2*x(1)/9, 2*x(1); ...

 x(2)/2, -1];

 gradceq = [];

end

See “Writing Scalar Objective Functions” on page 2-18 for information on conditionalized
functions. The gradient matrix has the form
gradci, j = [∂c(j)/∂xi].

The first column of the gradient matrix is associated with c(1), and the second column is
associated with c(2). This is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, indicate that they exist by using
optimoptions:

options=optimoptions(@fmincon,'GradConstr','on');

Make sure to pass the options structure to your solver:

[x,fval] = fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub, ...

 @ellipseparabola,options)

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
automatically, as described in “Symbolic Math Toolbox Calculates Gradients and
Hessians” on page 6-80.

Anonymous Nonlinear Constraint Functions

For information on anonymous objective functions, see “Anonymous Function Objectives”
on page 2-20.

Nonlinear constraint functions must return two outputs. The first output corresponds to
nonlinear inequalities, and the second corresponds to nonlinear equalities.

 Writing Constraints

2-37

Anonymous functions return just one output. So how can you write an anonymous
function as a nonlinear constraint?

The deal function distributes multiple outputs. For example, suppose your nonlinear
inequalities are

x x

x x

1
2

2
2

2 1
2

9 4
1

1

+ £

≥ -

,

.

Suppose that your nonlinear equality is
x2 = tanh(x1).

Write a nonlinear constraint function as follows:

c = @(x)[x(1)^2/9 + x(2)^2/4 - 1;

 x(1)^2 - x(2) - 1];

ceq = @(x)tanh(x(1)) - x(2);

nonlinfcn = @(x)deal(c(x),ceq(x));

To minimize the function cosh(x1) + sinh(x2) subject to the constraints in nonlinfcn, use
fmincon:

obj = @(x)cosh(x(1))+sinh(x(2));

opts = optimoptions(@fmincon,'Algorithm','sqp');

z = fmincon(obj,[0;0],[],[],[],[],[],[],nonlinfcn,opts)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the default

value of the function tolerance, and constraints are satisfied

to within the default value of the constraint tolerance.

z =

 -0.6530

 -0.5737

To check how well the resulting point z satisfies the constraints, use nonlinfcn:

[cout,ceqout] = nonlinfcn(z)

cout =

2 Setting Up an Optimization

2-38

 -0.8704

 0

ceqout =

 1.1102e-016

z indeed satisfies all the constraints to within the default value of the TolCon constraint
tolerance, 1e-6.

Or Instead of And Constraints

In general, solvers takes constraints with an implicit AND:

constraint 1 AND constraint 2 AND constraint 3 are all satisfied.

However, sometimes you want an OR:

constraint 1 OR constraint 2 OR constraint 3 is satisfied.

These formulations are not logically equivalent, and there is generally no way to express
OR constraints in terms of AND constraints.

Tip Fortunately, nonlinear constraints are extremely flexible. You get OR constraints
simply by setting the nonlinear constraint function to the minimum of the constraint
functions.

The reason that you can set the minimum as the constraint is due to the nature of
“Nonlinear Constraints” on page 2-35: you give them as a set of functions that must
be negative at a feasible point. If your constraints are
F1(x) ≤ 0 OR F2(x) ≤ 0 OR F3(x) ≤ 0,

then set the nonlinear inequality constraint function c(x) as:
c(x) = min(F1(x),F2(x),F3(x)).

c(x) is not smooth, which is a general requirement for constraint functions, due to the
minimum. Nevertheless, the method often works.

Note: You cannot use the usual bounds and linear constraints in an OR constraint.
Instead, convert your bounds and linear constraints to nonlinear constraint functions, as
in this example.

 Writing Constraints

2-39

For example, suppose your feasible region is the L-shaped region: x is in the rectangle –
1 ≤ x(1) ≤ 1, 0 ≤ x(2) ≤ 1 OR x is in the rectangle 0 ≤ x(1) ≤ 1, –1 ≤ x(2) ≤ 1.

Code for creating the figure

% Write the x and y coordinates of the figure, clockwise from (0,0)

x = [0,-1,-1,1,1,0,0];

y = [0,0,1,1,-1,-1,0];

plot(x,y)

xlim([-1.2 1.2])

ylim([-1.2 1.2])

axis equal

2 Setting Up an Optimization

2-40

To represent a rectangle as a nonlinear constraint, instead of as bound constraints,
construct a function that is negative inside the rectangle a ≤ x(1) ≤ b, c ≤ x(2) ≤ d:

function cout = rectconstr(x,a,b,c,d)

% Negative when x is in the rectangle [a,b][c,d]

% First check that a,b,c,d are in the correct order

if (b <= a) || (d <= c)

 error('Give a rectangle a < b, c < d')

end

cout = max([(x(1)-b),(x(2)-d),(a-x(1)),(c-x(2))]);

Following the prescription of using the minimum of nonlinear constraint functions, for
the L-shaped region, the nonlinear constraint function is:

function [c,ceq] = rectconstrfcn(x)

ceq = []; % no equality constraint

F(1) = rectconstr(x,-1,1,0,1); % one rectangle

F(2) = rectconstr(x,0,1,-1,1); % another rectangle

c = min(F); % for OR constraints

 Writing Constraints

2-41

Code for creating the figure

Plot rectconstrfcn over the region max|x| ≤ 2 for a = –1, b = 1, c = 0, d = 1:

[xx,yy] = meshgrid(-2:.1:2);

x = [xx(:),yy(:)]; % one row per point

z = zeros(length(x),1); % allocate

for ii = 1:length(x)

 [z(ii),~] = rectconstrfcn(x(ii,:));

end

z = reshape(z,size(xx));

surf(xx,yy,z)

2 Setting Up an Optimization

2-42

colorbar

axis equal

xlabel('x');ylabel('y')

view(0,90)

Suppose your objective function is

fun = @(x)exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Minimize fun over the L-shaped region:

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');

x0 = [-.5,.6]; % an arbitrary guess

[xsol,fval,eflag,output] = fmincon(fun,x0,[],[],[],[],[],[],@rectconstrfcn,opts)

xsol =

 0.4998 -0.9996

fval =

 2.4649e-07

eflag =

 1

output =

 iterations: 17

 funcCount: 59

 constrviolation: 0

 stepsize: 1.8763e-04

 algorithm: 'interior-point'

 firstorderopt: 4.9302e-07

 cgiterations: 0

 message: 'Local minimum found that satisfies the constraints.…'

Clearly, the solution xsol is inside the L-shaped region. The exit flag is 1, indicating
that xsol is a local minimum.

 Writing Constraints

2-43

How to Use All Types of Constraints

This section contains an example of a nonlinear minimization problem with all possible
types of constraints. The objective function is in the local function myobj(x). The
nonlinear constraints are in the local function myconstr(x). This example does not use
gradients.

function [x fval exitflag] = fullexample

x0 = [1; 4; 5; 2; 5];

lb = [-Inf; -Inf; 0; -Inf; 1];

ub = [Inf; Inf; 20; Inf; Inf];

Aeq = [1 -0.3 0 0 0];

beq = 0;

A = [0 0 0 -1 0.1

 0 0 0 1 -0.5

 0 0 -1 0 0.9];

b = [0; 0; 0];

opts = optimoptions(@fmincon,'Algorithm','sqp');

[x,fval,exitflag]=fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...

 @myconstr,opts)

%---

function f = myobj(x)

f = 6*x(2)*x(5) + 7*x(1)*x(3) + 3*x(2)^2;

%---

function [c, ceq] = myconstr(x)

c = [x(1) - 0.2*x(2)*x(5) - 71

 0.9*x(3) - x(4)^2 - 67];

ceq = 3*x(2)^2*x(5) + 3*x(1)^2*x(3) - 20.875;

Calling fullexample produces the following display in the Command Window:
[x fval exitflag] = fullexample;

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

 0.6114

 2.0380

 1.3948

 0.1572

2 Setting Up an Optimization

2-44

 1.5498

fval =

 37.3806

exitflag =

 1

 Objective and Nonlinear Constraints in the Same Function

2-45

Objective and Nonlinear Constraints in the Same Function

This example shows how to avoid calling a function twice when it computes values for
both objective and constraints.

You typically use such a function in a simulation. Solvers such as fmincon evaluate the
objective and nonlinear constraint functions separately. This evaluation is wasteful when
you use the same calculation for both results.

To avoid wasting time, have your calculation use a nested function to evaluate the
objective and constraint functions only when needed, by retaining the values of time-
consuming calculations. Using a nested function avoids using global variables, yet
lets intermediate results be retained and shared between the objective and constraint
functions.

Step 1. Function that computes objective and constraints.

For example, suppose computeall is the expensive (time-consuming) function called by
both the objective function and by the nonlinear constraint functions. Suppose you want
to use fmincon as your optimizer.

Write a function that computes a portion of Rosenbrock’s function f1 and a nonlinear
constraint c1 that keeps the solution in a disk of radius 1 around the origin. Rosenbrock’s
function is

f x x x x() () ,= -() + -100 12 1
2

2

1
2

which has a unique minimum value of 0 at (1,1). See “Solve a Constrained Nonlinear
Problem” on page 1-3.

In this example there is no nonlinear equality constraint, so ceq1 = []. Add a
pause(1) statement to simulate an expensive computation.

function [f1,c1,ceq1] = computeall(x)

 ceq1 = [];

 c1 = norm(x)^2 - 1;

 f1 = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

 pause(1) % simulate expensive computation

end

2 Setting Up an Optimization

2-46

Save computeall.m as a file on your MATLAB path.

Step 2. Embed function in nested function that keeps recent values.

Suppose the objective function is
y = 100(x2 – x1

2)2 + (1 – x1)2

+ 20*(x3 – x4
2)2 + 5*(1 – x4)2.

computeall returns the first part of the objective function. Embed the call to
computeall in a nested function:

function [x,f,eflag,outpt] = runobjconstr(x0,opts)

if nargin == 1 % No options supplied

 opts = [];

end

xLast = []; % Last place computeall was called

myf = []; % Use for objective at xLast

myc = []; % Use for nonlinear inequality constraint

myceq = []; % Use for nonlinear equality constraint

fun = @objfun; % the objective function, nested below

cfun = @constr; % the constraint function, nested below

% Call fmincon

[x,f,eflag,outpt] = fmincon(fun,x0,[],[],[],[],[],[],cfun,opts);

 function y = objfun(x)

 if ~isequal(x,xLast) % Check if computation is necessary

 [myf,myc,myceq] = computeall(x);

 xLast = x;

 end

 % Now compute objective function

 y = myf + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;

 end

 function [c,ceq] = constr(x)

 if ~isequal(x,xLast) % Check if computation is necessary

 [myf,myc,myceq] = computeall(x);

 xLast = x;

 end

 % Now compute constraint functions

 c = myc; % In this case, the computation is trivial

 Objective and Nonlinear Constraints in the Same Function

2-47

 ceq = myceq;

 end

end

Save the nested function as a file named runobjconstr.m on your MATLAB path.

Step 3. Time to run with nested function.

Run the file, timing the call with tic and toc.

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');

x0 = [-1,1,1,2];

tic

[x,fval,exitflag,output] = runobjconstr(x0,opts);

toc

Elapsed time is 203.797275 seconds.

Step 4. Time to run without nested function.

Compare the times to run the solver with and without the nested function. For the
run without the nested function, save myrosen2.m as the objective function file, and
constr.m as the constraint:

function y = myrosen2(x)

 f1 = computeall(x); % get first part of objective

 y = f1 + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;

end

function [c,ceq] = constr(x)

 [~,c,ceq] = computeall(x);

end

Run fmincon, timing the call with tic and toc.

tic

[x,fval,exitflag,output] = fmincon(@myrosen2,x0,...

 [],[],[],[],[],[],@constr,opts);

toc

Elapsed time is 406.771978 seconds.

The solver takes twice as long as before, because it evaluates the objective and constraint
separately.

2 Setting Up an Optimization

2-48

Step 5. Save computing time with parallel computing.

If you have a Parallel Computing Toolbox license, you can save even more time by setting
the UseParallel option to true.

parpool

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

ans =

 Pool with properties:

 Connected: true

 NumWorkers: 4

 Cluster: local

 AttachedFiles: {}

 IdleTimeout: 30 minute(s) (30 minutes remaining)

 SpmdEnabled: true

opts = optimoptions(opts,'UseParallel',true);

tic

[x,fval,exitflag,output] = runobjconstr(x0,opts);

toc

Elapsed time is 97.528110 seconds.

In this case, enabling parallel computing cuts the computational time in half.

Compare the runs with parallel computing, with and without a nested function:

tic

[x,fval,exitflag,output] = fmincon(@myrosen2,x0,...

 [],[],[],[],[],[],@constr,opts);

toc

Elapsed time is 188.985178 seconds.

In this example, computing in parallel but not nested takes about the same time as
computing nested but not parallel. Computing both nested and parallel takes half the
time of using either alone.

Related Examples
• “Solve a Constrained Nonlinear Problem” on page 1-3

 Objective and Nonlinear Constraints in the Same Function

2-49

More About
• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-31
• “Parallel Computing”

2 Setting Up an Optimization

2-50

Passing Extra Parameters

Extra Parameters, Fixed Variables, or Data

Sometimes objective or constraint functions have parameters in addition to the
independent variable. The extra parameters can be data, or can represent variables
that do not change during the optimization. There are three methods of passing these
parameters:

• “Anonymous Functions” on page 2-50
• “Nested Functions” on page 2-52
• “Global Variables” on page 2-52

Global variables are troublesome because they do not allow names to be reused among
functions. It is better to use one of the other two methods.

For example, suppose you want to minimize the function

f x a bx x x x x c cx x() /= - +() + + - +()1
2

1
4

1
2

1 2 2
2

2
2

3

for different values of a, b, and c. Solvers accept objective functions that depend only on a
single variable (x in this case). The following sections show how to provide the additional
parameters a, b, and c. The solutions are for parameter values a = 4, b = 2.1, and c = 4
near x0 = [0.5 0.5] using fminunc.

Anonymous Functions

To pass parameters using anonymous functions:

1 Write a file containing the following code:

function y = parameterfun(x,a,b,c)

y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

 (-c + c*x(2)^2)*x(2)^2;

2 Assign values to the parameters and define a function handle f to an anonymous
function by entering the following commands at the MATLAB prompt:

a = 4; b = 2.1; c = 4; % Assign parameter values

x0 = [0.5,0.5];

f = @(x)parameterfun(x,a,b,c);

 Passing Extra Parameters

2-51

3 Call the solver fminunc with the anonymous function:

[x,fval] = fminunc(f,x0)

The following output is displayed in the command window:

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

x =

 -0.0898 0.7127

fval =

 -1.0316

Note: The parameters passed in the anonymous function are those that exist at the time
the anonymous function is created. Consider the example

a = 4; b = 2.1; c = 4;

f = @(x)parameterfun(x,a,b,c)

Suppose you subsequently change, a to 3 and run

[x,fval] = fminunc(f,x0)

You get the same answer as before, since parameterfun uses a = 4, the value when f
was created.

To change the parameters that are passed to the function, renew the anonymous function
by reentering it:

a = 3;

f = @(x)parameterfun(x,a,b,c)

You can create anonymous functions of more than one argument. For example, to use
lsqcurvefit, first create a function that takes two input arguments, x and xdata:

fh = @(x,xdata)(sin(x).*xdata +(x.^2).*cos(xdata));

x = pi; xdata = pi*[4;2;3];

fh(x, xdata)

ans =

2 Setting Up an Optimization

2-52

 9.8696

 9.8696

 -9.8696

Now call lsqcurvefit:

% Assume ydata exists

x = lsqcurvefit(fh,x,xdata,ydata)

Nested Functions

To pass the parameters for Equation 2-2 via a nested function, write a single file that

• Accepts a, b, c, and x0 as inputs
• Contains the objective function as a nested function
• Calls fminunc

Here is the code for the function file for this example:

function [x,fval] = runnested(a,b,c,x0)

[x,fval] = fminunc(@nestedfun,x0);

% Nested function that computes the objective function

 function y = nestedfun(x)

 y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) +...

 (-c + c*x(2)^2)*x(2)^2;

 end

end

The objective function is the nested function nestedfun, which has access to the
variables a, b, and c.

To run the optimization, enter:

a = 4; b = 2.1; c = 4;% Assign parameter values

x0 = [0.5,0.5];

[x,fval] = runnested(a,b,c,x0)

The output is the same as in “Anonymous Functions” on page 2-50.

Global Variables

Global variables can be troublesome, so it is better to avoid using them. To use global
variables, declare the variables to be global in the workspace and in the functions that
use the variables.

 Passing Extra Parameters

2-53

1 Write a function file:

function y = globalfun(x)

global a b c

y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

 (-c + c*x(2)^2)*x(2)^2;

2 In your MATLAB workspace, define the variables and run fminunc:

global a b c;

a = 4; b = 2.1; c = 4; % Assign parameter values

x0 = [0.5,0.5];

[x,fval] = fminunc(@globalfun,x0)

The output is the same as in “Anonymous Functions” on page 2-50.

2 Setting Up an Optimization

2-54

What Are Options?

Options are a way of combining a set of name-value pairs. They are useful because they
allow you to:

• Tune or modify the optimization process.
• Select extra features, such as output functions and plot functions.
• Save and reuse settings.

They simplify solver syntax—you don’t have to include a lot of name-value pairs in a call
to a solver.

To see how to set and change options, see “Set and Change Options” on page 2-56.

For an overview of all options, including which solvers use each option, see “Optimization
Options Reference” on page 13-7.

 Options in Common Use: Tuning and Troubleshooting

2-55

Options in Common Use: Tuning and Troubleshooting

You set or change options when the default settings do not work sufficiently well. This
can mean the solver takes too long to converge, the solver fails, or you are unsure of the
reliability of the result.

To tune your solver for improved speed or accuracy, try setting these options first:

• “Choosing the Algorithm” on page 2-7 — Algorithm
• “Tolerances and Stopping Criteria” on page 2-61 — TolFun, TolX, MaxFunEvals,

and MaxIter
• Finite differences — FinDiffType and FinDiffRelStep

To diagnose and troubleshoot, try setting these options first:

• “Iterative Display” on page 3-16 — Display
• Function evaluation errors — FunValCheck
• “Plot Functions” on page 3-29 and “Output Functions” on page 3-35 —

PlotFcns and OutputFunction

See Also
optimoptions | optimset

Related Examples
• “Improve Results”

More About
• “Solver Outputs and Iterative Display”

2 Setting Up an Optimization

2-56

Set and Change Options

The recommended way to set options is to use the optimoptions function. For example,
to set the fmincon algorithm to sqp, set iterative display, and set a small value of the
TolCon tolerance:

options = optimoptions('fmincon',...

 'Algorithm','sqp','Display','iter','TolCon',1e-12);

Note: Use optimset instead of optimoptions for the fminbnd, fminsearch, fzero,
and lsqnonneg solvers. These are the solvers that do not require an Optimization
Toolbox license.

Change options as follows:

• Dot notation. For example,

options.TolX = 1e-10;

• optimoptions. For example,

options = optimoptions(options,'TolX',1e-10);

Ensure that you pass options in your solver call. For example,

[x,fval] = fmincon(@objfun,x0,[],[],[],[],lb,ub,@nonlcon,options);

You can also set and change options using the “Optimization App” on page 5-2.

 Choose Between optimoptions and optimset

2-57

Choose Between optimoptions and optimset

Previously, the recommended way to set options was to use optimset. Now the general
recommendation is to use optimoptions, with some caveats listed below.

optimset still works, and it is the only way to set options for solvers that are
available without an Optimization Toolbox license: fminbnd, fminsearch, fzero, and
lsqnonneg.

Note: Some other toolboxes use optimization options and require you to pass in options
created using optimset, not optimoptions. Check the documentation for your
toolboxes.

optimoptions organizes options by solver, with a more focused and comprehensive
display than optimset:

• Creates and modifies only the options that apply to a solver
• Shows your option choices and default values for a specific solver/algorithm
• Displays links for more information on solver options and other available solver

algorithms

intlinprog uses only optimoptions options.

The main difference in creating options is:

• For optimoptions, you include the solver name as the first argument.

options = optimoptions(SolverName,Name,Value,...)

• For optimset, the syntax does not include the solver name.

options = optimset(Name,Value,...)

In both cases, you can query or change options by using dot notation. See “Set and
Change Options” on page 2-56 and “View Options” on page 2-59.

For example, compare the display of optimoptions to that of optimset.

options = optimset('GradObj','on')

options = optimoptions(@fminunc,'GradObj','on')

2 Setting Up an Optimization

2-58

 View Options

2-59

View Options

You can view the value of a particular option by using dot notation. For example,

options = optimoptions('fmincon','Algorithm','interior-point');

To view the value of the TolX tolerance:

options.TolX

ans =

 1.0000e-10

You can view the value of all options, and see which ones have nondefault values, by
entering the options name:

options

2 Setting Up an Optimization

2-60

 Tolerances and Stopping Criteria

2-61

Tolerances and Stopping Criteria

The number of iterations in an optimization depends on a solver's stopping criteria.
These criteria include several tolerances you can set. Generally, a tolerance is a threshold
which, if crossed, stops the iterations of a solver.

Set tolerances and other criteria using optimoptions as explained in “Set and Change
Options” on page 2-56.

Tip Generally set tolerances such as TolFun and TolX to be well above eps, and
usually above 1e-14. Setting small tolerances does not always result in accurate
results. Instead, a solver can fail to recognize when it has converged, and can continue
futile iterations. A tolerance value smaller than eps effectively disables that stopping
condition.

You can find the default tolerances in the “Optimization App” on page 5-2. Some
default tolerances differ for different algorithms, so set both the solver and the algorithm.

optimoptions displays default tolerances. For example,

options = optimoptions('fmincon')

2 Setting Up an Optimization

2-62

 Tolerances and Stopping Criteria

2-63

You can also find the default tolerances in the options section of the solver function
reference page.

• TolX is a lower bound on the size of a step, meaning the norm of (xi – xi+1). If the
solver attempts to take a step that is smaller than TolX, the iterations end. TolX
is sometimes used as a relative bound, meaning iterations end when |(xi – xi+1)| <
TolX*(1 + |xi|), or a similar relative measure.

�

�

TolFun

�

� �

TolX

1

2

3
4 5

Iterations end
when the last step
is smaller than
TolFun or TolX

• For some algorithms, TolFun is a lower bound on the change in the value of the
objective function during a step. For those algorithms, if |f(xi) – f(xi+1)| < TolFun, the
iterations end. TolFun is sometimes used as a relative bound, meaning iterations end
when |f(xi) – f(xi+1)| < TolFun*(1 + |f(xi)|), or a similar relative measure.

Note: TolFun is most often a bound on the first-order optimality measure. If the
optimality measure is less than TolFun, the iterations end. TolFun can also be a
relative bound on the first-order optimality measure. First-order optimality measure
is defined in “First-Order Optimality Measure” on page 3-11.

• TolCon is an upper bound on the magnitude of any constraint functions. If a solver
returns a point x with c(x) > TolCon or |ceq(x)| > TolCon, the solver reports that the
constraints are violated at x. TolCon can also be a relative bound.

Note: TolCon operates differently from other tolerances. If TolCon is not satisfied
(i.e., if the magnitude of the constraint function exceeds TolCon), the solver attempts

2 Setting Up an Optimization

2-64

to continue, unless it is halted for another reason. A solver does not halt simply
because TolCon is satisfied.

• MaxIter is a bound on the number of solver iterations. MaxFunEvals is a bound on
the number of function evaluations. Iterations and function evaluations are discussed
in “Iterations and Function Counts” on page 3-10.

There are two other tolerances that apply to particular solvers: TolPCG and
MaxPCGIter. These relate to preconditioned conjugate gradient steps. For more
information, see “Preconditioned Conjugate Gradient Method” on page 6-23.

There are several tolerances that apply only to the fmincon interior-point algorithm. For
more information, see Interior-Point Algorithm in fmincon options.

There are several tolerances that apply only to intlinprog. See “Some “Integer”
Solutions Are Not Integers” on page 8-47 and “Branch and Bound” on page 8-42.

 Checking Validity of Gradients or Jacobians

2-65

Checking Validity of Gradients or Jacobians

In this section...

“How to Check Derivatives” on page 2-65
“Example: Checking Derivatives of Objective and Constraint Functions” on page
2-66

Many solvers allow you to supply a function that calculates first derivatives (gradients
or Jacobians) of objective or constraint functions. You can check whether the derivatives
calculated by your function match finite-difference approximations. This check can help
you diagnose whether your derivative function is correct.

• If a component of the gradient function is less than 1, “match” means the absolute
difference of the gradient function and the finite-difference approximation of that
component is less than 1e-6.

• Otherwise, “match” means that the relative difference is less than 1e-6.

The DerivativeCheck option causes the solver to check the supplied derivative against
a finite-difference approximation at just one point. If the finite-difference and supplied
derivatives do not match, the solver errors. If the derivatives match to within 1e-6,
the solver reports the calculated differences, and continues iterating without further
derivative checks. Solvers check the match at a point that is a small random perturbation
of the initial point x0, modified to be within any bounds. Solvers do not include the
computations for DerivativeCheck in the function count; see “Iterations and Function
Counts” on page 3-10.

How to Check Derivatives

• At the MATLAB command line:

1 Set the GradObj, GradConstr, or Jacobian options to 'on' with
optimoptions. Make sure your objective or constraint functions supply the
appropriate derivatives.

2 Set the DerivativeCheck option to 'on'.
• Using the Optimization app:

1 In the Problem Setup and Results pane, choose Derivatives: Objective
function: Gradient supplied or Nonlinear constraint function:

2 Setting Up an Optimization

2-66

Derivatives: Gradient supplied. Make sure your objective or constraint
functions supply the appropriate derivatives.

2 In the Options pane, check User-supplied derivatives > Validate user-
supplied derivatives

Central finite differences are more accurate than the default forward finite differences.
To use central finite differences:

• At the MATLAB command line, set FinDiffType option to 'central' with
optimoptions.

• Using the Optimization app, in the Approximated derivatives pane, set Type to
central differences.

Example: Checking Derivatives of Objective and Constraint Functions

• “Objective and Constraint Functions” on page 2-66
• “Checking Derivatives at the Command Line” on page 2-67
• “Checking Derivatives with the Optimization App” on page 2-68

Objective and Constraint Functions

Consider the problem of minimizing the Rosenbrock function within the unit disk as
described in “Solve a Constrained Nonlinear Problem” on page 1-3. The rosenboth
function calculates the objective function and its gradient:

function [f g H] = rosenboth(x)

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1

 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

 if nargout > 2

 H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

 -400*x(1), 200];

 end

end

rosenboth calculates the Hessian, too, but this example does not use the Hessian.

The unitdisk2 function correctly calculates the constraint function and its gradient:

 Checking Validity of Gradients or Jacobians

2-67

function [c,ceq,gc,gceq] = unitdisk2(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

if nargout > 2

 gc = [2*x(1);2*x(2)];

 gceq = [];

end

The unitdiskb function incorrectly calculates gradient of the constraint function:

function [c ceq gc gceq] = unitdiskb(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

if nargout > 2

 gc = [x(1);x(2)]; % Gradient incorrect: off by a factor of 2

 gceq = [];

end

Checking Derivatives at the Command Line

1 Set the options to use the interior-point algorithm, gradient of objective and
constraint functions, and the DerivativeCheck option:

% For reproducibility--DerivativeCheck randomly perturbs the initial point

rng(0,'twister');

options = optimoptions(@fmincon,'Algorithm','interior-point',...

 'DerivativeCheck','on','GradObj','on','GradConstr','on');

2 Solve the minimization with fmincon using the erroneous unitdiskb constraint
function:

[x fval exitflag output] = fmincon(@rosenboth,...

 [-1;2],[],[],[],[],[],[],@unitdiskb,options);

__

 Derivative Check Information

Objective function derivatives:

Maximum relative difference between user-supplied

and finite-difference derivatives = 1.84768e-008.

Nonlinear inequality constraint derivatives:

Maximum relative difference between user-supplied

and finite-difference derivatives = 1.

 User-supplied constraint derivative element (2,1): 1.99838

2 Setting Up an Optimization

2-68

 Finite-difference constraint derivative element (2,1): 3.99675

__

Error using validateFirstDerivatives

Derivative Check failed:

User-supplied and forward finite-difference derivatives

do not match within 1e-006 relative tolerance.

Error in fmincon at 805

 validateFirstDerivatives(funfcn,confcn,X, ...

The constraint function does not match the calculated gradient, encouraging you to
check the function for an error.

3 Replace the unitdiskb constraint function with unitdisk2 and run the
minimization again:

[x fval exitflag output] = fmincon(@rosenboth,...

 [-1;2],[],[],[],[],[],[],@unitdisk2,options);

__

 Derivative Check Information

Objective function derivatives:

Maximum relative difference between user-supplied

and finite-difference derivatives = 1.28553e-008.

Nonlinear inequality constraint derivatives:

Maximum relative difference between user-supplied

and finite-difference derivatives = 1.46443e-008.

Derivative Check successfully passed.

__

Local minimum found that satisfies the constraints...

Checking Derivatives with the Optimization App

Note: The Optimization app warns that it will be removed in a future release.

To set up the example using correct derivative functions, but starting from [0 0], using
the Optimization app:

 Checking Validity of Gradients or Jacobians

2-69

1 Launch the Optimization app by entering optimtool at the command line.
2 Set the Problem Setup and Results pane to match the following figure:

3 Set the Options pane to match the following figure:

2 Setting Up an Optimization

2-70

4 Press the Start button under Run solver and view results.

The output screen displays

 Checking Validity of Gradients or Jacobians

2-71

The forward finite difference approximation is inaccurate enough near [0 0] that
the derivative check fails.

5 To use the more accurate central differences, select central differences in the
Approximated derivatives > Type pane:

6 Click Run solver and view results > Clear Results, then Start. This time the
derivative check is successful:

2 Setting Up an Optimization

2-72

The derivative check also succeeds when you select the initial point [-1 2], or most
random points.

 Bibliography

2-73

Bibliography

[1] Biggs, M.C., “Constrained Minimization Using Recursive Quadratic Programming,”
Towards Global Optimization (L.C.W. Dixon and G.P. Szergo, eds.), North-
Holland, pp 341–349, 1975.

[2] Brayton, R.K., S.W. Director, G.D. Hachtel, and L. Vidigal, “A New Algorithm for
Statistical Circuit Design Based on Quasi-Newton Methods and Function
Splitting,” IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 784–794,
Sept. 1979.

[3] Broyden, C.G., “The Convergence of a Class of Double-rank Minimization
Algorithms,”; J. Inst. Maths. Applics., Vol. 6, pp 76–90, 1970.

[4] Conn, N.R., N.I.M. Gould, and Ph.L. Toint, Trust-Region Methods, MPS/SIAM Series
on Optimization, SIAM and MPS, 2000.

[5] Dantzig, G., Linear Programming and Extensions, Princeton University Press,
Princeton, 1963.

[6] Dantzig, G.B., A. Orden, and P. Wolfe, “Generalized Simplex Method for Minimizing a
Linear Form Under Linear Inequality Restraints,” Pacific Journal Math., Vol. 5,
pp. 183–195, 1955.

[7] Davidon, W.C., “Variable Metric Method for Minimization,” A.E.C. Research and
Development Report, ANL-5990, 1959.

[8] Dennis, J.E., Jr., “Nonlinear least-squares,” State of the Art in Numerical Analysis ed.
D. Jacobs, Academic Press, pp 269–312, 1977.

[9] Dennis, J.E., Jr. and R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall Series in Computational
Mathematics, Prentice-Hall, 1983.

[10] Fleming, P.J., “Application of Multiobjective Optimization to Compensator Design
for SISO Control Systems,” Electronics Letters, Vol. 22, No. 5, pp 258–259, 1986.

[11] Fleming, P.J., “Computer-Aided Control System Design of Regulators using a
Multiobjective Optimization Approach,” Proc. IFAC Control Applications of
Nonlinear Prog. and Optim., Capri, Italy, pp 47–52, 1985.

2 Setting Up an Optimization

2-74

[12] Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer Journal,
Vol. 13, pp 317–322, 1970.

[13] Fletcher, R., “Practical Methods of Optimization,” John Wiley and Sons, 1987.

[14] Fletcher, R. and M.J.D. Powell, “A Rapidly Convergent Descent Method for
Minimization,” Computer Journal, Vol. 6, pp 163–168, 1963.

[15] Forsythe, G.F., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical
Computations, Prentice Hall, 1976.

[16] Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter
Sensitivity Indices,” Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio,
1974.

[17] Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright, “Procedures for
Optimization Problems with a Mixture of Bounds and General Linear
Constraints,” ACM Trans. Math. Software, Vol. 10, pp 282–298, 1984.

[18] Gill, P.E., W. Murray, and M.H. Wright, Numerical Linear Algebra and
Optimization, Vol. 1, Addison Wesley, 1991.

[19] Gill, P.E., W. Murray, and M.H.Wright, Practical Optimization, London, Academic
Press, 1981.

[20] Goldfarb, D., “A Family of Variable Metric Updates Derived by Variational Means,”
Mathematics of Computing, Vol. 24, pp 23–26, 1970.

[21] Grace, A.C.W., “Computer-Aided Control System Design Using Optimization
Techniques,” Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.

[22] Han, S.P., “A Globally Convergent Method for Nonlinear Programming,” J.
Optimization Theory and Applications, Vol. 22, p. 297, 1977.

[23] Hock, W. and K. Schittkowski, “A Comparative Performance Evaluation of 27
Nonlinear Programming Codes,” Computing, Vol. 30, p. 335, 1983.

[24] Hollingdale, S.H., Methods of Operational Analysis in Newer Uses of Mathematics
(James Lighthill, ed.), Penguin Books, 1978.

[25] Levenberg, K., “A Method for the Solution of Certain Problems in Least Squares,”
Quart. Appl. Math. Vol. 2, pp 164–168, 1944.

 Bibliography

2-75

[26] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance
Optimization,” IEEE Transactions of Circuits and Systems, Vol. CAS-26, Sept.
1979.

[27] Marquardt, D., “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math. Vol. 11, pp 431–441, 1963.

[28] Moré, J.J., “The Levenberg-Marquardt Algorithm: Implementation and Theory,”
Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630,
Springer Verlag, pp 105–116, 1977.

[29] NAG Fortran Library Manual, Mark 12, Vol. 4, E04UAF, p. 16.

[30] Nelder, J.A. and R. Mead, “A Simplex Method for Function Minimization,” Computer
J., Vol.7, pp 308–313, 1965.

[31] Nocedal, J. and S. J. Wright. Numerical Optimization, Second Edition. Springer
Series in Operations Research, Springer Verlag, 2006.

[32] Powell, M.J.D., “The Convergence of Variable Metric Methods for Nonlinearly
Constrained Optimization Calculations,” Nonlinear Programming 3, (O.L.
Mangasarian, R.R. Meyer and S.M. Robinson, eds.), Academic Press, 1978.

[33] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations,” Numerical Analysis, G.A.Watson ed., Lecture Notes in
Mathematics, Springer Verlag, Vol. 630, 1978.

[34] Powell, M.J.D., “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic
Equations,” Numerical Methods for Nonlinear Algebraic Equations, (P.
Rabinowitz, ed.), Ch.7, 1970.

[35] Powell, M.J.D., “Variable Metric Methods for Constrained Optimization,”
Mathematical Programming: The State of the Art, (A. Bachem, M. Grotschel and
B. Korte, eds.) Springer Verlag, pp 288–311, 1983.

[36] Schittkowski, K., “NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear
Programming Problems,” Annals of Operations Research, Vol. 5, pp 485-500,
1985.

[37] Shanno, D.F., “Conditioning of Quasi-Newton Methods for Function Minimization,”
Mathematics of Computing, Vol. 24, pp 647–656, 1970.

[38] Waltz, F.M., “An Engineering Approach: Hierarchical Optimization Criteria,” IEEE
Trans., Vol. AC-12, pp 179–180, April, 1967.

2 Setting Up an Optimization

2-76

[39] Branch, M.A., T.F. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate
Gradient Method for Large-Scale Bound-Constrained Minimization Problems,”
SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1–23, 1999.

[40] Byrd, R.H., J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming,” Mathematical Programming, Vol
89, No. 1, pp. 149–185, 2000.

[41] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point Algorithm for
Large-Scale Nonlinear Programming,” SIAM Journal on Optimization, Vol 9, No.
4, pp. 877–900, 1999.

[42] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, “Approximate Solution of the
Trust Region Problem by Minimization over Two-Dimensional Subspaces,”
Mathematical Programming, Vol. 40, pp 247–263, 1988.

[43] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds,” Mathematical
Programming, Vol. 67, Number 2, pp 189–224, 1994.

[44] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp 418–
445, 1996.

[45] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic
Function Subject to Bounds on some of the Variables,” SIAM Journal on
Optimization, Vol. 6, Number 4, pp 1040–1058, 1996.

[46] Coleman, T.F. and A. Verma, “A Preconditioned Conjugate Gradient Approach to
Linear Equality Constrained Minimization,” Computational Optimization and
Applications, Vol. 20, No. 1, pp. 61–72, 2001.

[47] Mehrotra, S., “On the Implementation of a Primal-Dual Interior Point Method,”
SIAM Journal on Optimization, Vol. 2, pp 575–601, 1992.

[48] Moré, J.J. and D.C. Sorensen, “Computing a Trust Region Step,” SIAM Journal on
Scientific and Statistical Computing, Vol. 3, pp 553–572, 1983.

[49] Sorensen, D.C., “Minimization of a Large Scale Quadratic Function Subject to an
Ellipsoidal Constraint,” Department of Computational and Applied Mathematics,
Rice University, Technical Report TR94-27, 1994.

 Bibliography

2-77

[50] Steihaug, T., “The Conjugate Gradient Method and Trust Regions in Large Scale
Optimization,” SIAM Journal on Numerical Analysis, Vol. 20, pp 626–637, 1983.

[51] Waltz, R. A. , J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm
for nonlinear optimization that combines line search and trust region steps,”
Mathematical Programming, Vol 107, No. 3, pp. 391–408, 2006.

[52] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point Methods Under
the MATLAB Environment,” Department of Mathematics and Statistics,
University of Maryland, Baltimore County, Baltimore, MD, Technical Report
TR96-01, July, 1995.

[53] Hairer, E., S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I -
Nonstiff Problems, Springer-Verlag, pp. 183–184.

[54] Chvatal, Vasek, Linear Programming, W. H. Freeman and Company, 1983.

[55] Bixby, Robert E., “Implementing the Simplex Method: The Initial Basis,” ORSA
Journal on Computing, Vol. 4, No. 3, 1992.

[56] Andersen, Erling D. and Knud D. Andersen, “Presolving in Linear Programming,”
Mathematical Programming, Vol. 71, pp. 221–245, 1995.

[57] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM
Journal of Optimization, Vol. 9, Number 1, pp. 112–147, 1998.

[58] Dolan, Elizabeth D. , Jorge J. Moré and Todd S. Munson, “Benchmarking
Optimization Software with COPS 3.0,” Argonne National Laboratory Technical
Report ANL/MCS-TM-273, February 2004.

[59] Applegate, D. L., R. E. Bixby, V. Chvátal and W. J. Cook, The Traveling Salesman
Problem: A Computational Study, Princeton University Press, 2007.

[60] Spellucci, P., “A new technique for inconsistent QP problems in the SQP method,”
Journal of Mathematical Methods of Operations Research, Volume 47, Number 3,
pp. 355–400, October 1998.

[61] Tone, K., “Revisions of constraint approximations in the successive QP method for
nonlinear programming problems,” Journal of Mathematical Programming,
Volume 26, Number 2, pp. 144–152, June 1983.

2 Setting Up an Optimization

2-78

[62] Gondzio, J. “Multiple centrality corrections in a primal dual method for linear
programming.” Computational Optimization and Applications, Volume 6,
Number 2, pp. 137–156, 1996.

[63] Gould, N. and P. L. Toint. “Preprocessing for quadratic programming.” Math.
Programming, Series B, Vol. 100, pp. 95–132, 2004.

[64] Schittkowski, K., “More Test Examples for Nonlinear Programming Codes,” Lecture
Notes in Economics and Mathematical Systems, Number 282, Springer, p. 45,
1987.

3

Examining Results

• “Current Point and Function Value” on page 3-2
• “Exit Flags and Exit Messages” on page 3-3
• “Iterations and Function Counts” on page 3-10
• “First-Order Optimality Measure” on page 3-11
• “Iterative Display” on page 3-16
• “Output Structures” on page 3-24
• “Lagrange Multiplier Structures” on page 3-25
• “Hessian” on page 3-26
• “Plot Functions” on page 3-29
• “Output Functions” on page 3-35

3 Examining Results

3-2

Current Point and Function Value

The current point and function value are the first two outputs of all Optimization Toolbox
solvers.

• The current point is the final point in the solver iterations. It is the best point the
solver found in its run.

• If you call a solver without assigning a value to the output, the default output,
ans, is the current point.

• The function value is the value of the objective function at the current point.

• The function value for least-squares solvers is the sum of squares, also known as
the residual norm.

• fgoalattain, fminimax, and fsolve return a vector function value.
• Sometimes fval or Fval denotes function value.

 Exit Flags and Exit Messages

3-3

Exit Flags and Exit Messages

In this section...

“Exit Flags” on page 3-3
“Exit Messages” on page 3-4
“Enhanced Exit Messages” on page 3-5
“Exit Message Options” on page 3-8

Exit Flags

When an optimization solver completes its task, it sets an exit flag. An exit flag is an
integer that is a code for the reason the solver halted its iterations. In general:

• Positive exit flags correspond to successful outcomes.
• Negative exit flags correspond to unsuccessful outcomes.
• The zero exit flag corresponds to the solver being halted by exceeding an iteration

limit or limit on the number of function evaluations (see “Iterations and Function
Counts” on page 3-10, and also see “Tolerances and Stopping Criteria” on page
2-61).

A table of solver outputs in the solver's function reference section lists the meaning of
each solver's exit flags.

Note: Exit flags are not infallible guides to the quality of a solution. Many other factors,
such as tolerance settings, can affect whether a solution is satisfactory to you. You are
responsible for deciding whether a solver returns a satisfactory answer. Sometimes a
negative exit flag does not correspond to a “bad” solution. Similarly, sometimes a positive
exit flag does not correspond to a “good” solution.

You obtain an exit flag by calling a solver with the exitflag syntax. This syntax
depends on the solver. For details, see the solver function reference pages. For example,
for fsolve, the calling syntax to obtain an exit flag is

[x,fval,exitflag] = fsolve(...)

The following example uses this syntax. Suppose you want to solve the system of
nonlinear equations

3 Examining Results

3-4

2

2

1 2

1 2

1

2

x x e

x x e

x

x

- =

- + =

-

-
.

Write these equations as an anonymous function that gives a zero vector at a solution:

myfcn = @(x)[2*x(1) - x(2) - exp(-x(1));

 -x(1) + 2*x(2) - exp(-x(2))];

Call fsolve with the exitflag syntax at the initial point [-5 -5]:

[xfinal fval exitflag] = fsolve(myfcn,[-5 -5])

Equation solved.

fsolve completed because the vector of function values is near

zero as measured by the default value of the function tolerance,

and the problem appears regular as measured by the gradient.

xfinal =

 0.5671 0.5671

fval =

 1.0e-006 *

 -0.4059

 -0.4059

exitflag =

 1

In the table for fsolve exitflag, you find that an exit flag value 1 means “Function
converged to a solution x.” In other words, fsolve reports myfcn is nearly zero at
x = [0.5671 0.5671].

Exit Messages

Each solver issues a message to the MATLAB command window at the end of its
iterations. This message explains briefly why the solver halted. The message might give
more detail than the exit flag.

Many examples in this documentation show exit messages. For example, see “Minimizing
at the Command Line” on page 1-10, or “Step 3: Invoke fminunc using the options.” on

 Exit Flags and Exit Messages

3-5

page 6-13. The example in the previous section, “Exit Flags” on page 3-3, shows
the following exit message:

Equation solved.

fsolve completed because the vector of function values is near

zero as measured by the default value of the function tolerance,

and the problem appears regular as measured by the gradient.

This message is more informative than the exit flag. The message indicates that the
gradient is relevant. The message also states that the function tolerance controls
how near 0 the vector of function values must be for fsolve to regard the solution as
completed.

Enhanced Exit Messages

Some solvers have exit messages that contain links for more information. There are two
types of links:

• Links on words or phrases. If you click such a link, a window opens that displays a
definition of the term, or gives other information. The new window can contain links
to the Help browser documentation for more detailed information.

• A link as the last line of the display saying <stopping criteria details>. If you
click this link, MATLAB displays more detail about the reason the solver halted.

The fminunc solver has enhanced exit messages:

opts = optimoptions(@fminunc,'Algorithm','quasi-newton'); % 'trust-region' needs gradient

[xfinal fval exitflag] = fminunc(@sin,0,opts)

This yields the following results:

3 Examining Results

3-6

Each of the underlined words or phrases contains a link that provides more information.

• The <stopping criteria details> link prints the following to the MATLAB
command line:
Optimization completed: The first-order optimality measure, 0.000000e+000, is less

than the default value of options.TolFun = 1.000000e-006.

Optimization Metric User Options

relative norm(gradient) = 0.00e+000 TolFun = 1e-006 (default)

• The other links bring up a help window with term definitions. For example, clicking
the Local minimum found link opens the following window:

 Exit Flags and Exit Messages

3-7

Clicking the first-order optimality measure expander link brings up the
definition of first-order optimality measure for fminunc:

3 Examining Results

3-8

The expander link is a way to obtain more information in the same window. Clicking
the first-order optimality measure expander link again closes the definition.

• The other links open the Help Viewer.

Exit Message Options

Set the Display option to control the appearance of both exit messages and iterative
display. For more information, see “Iterative Display” on page 3-16. The following
table shows the effect of the various settings of the Display option.

 Exit Flags and Exit Messages

3-9

Output to Command WindowValue of the Display Option

Exit message Iterative Display

'none', or the synonymous 'off' None None
'final' (default for most solvers) Default None
'final-detailed' Detailed None
'iter' Default Yes
'iter-detailed' Detailed Yes
'notify' Default only if exitflag ≤ 0 None
'notify-detailed' Detailed only if exitflag ≤ 0 None

For example,

opts = optimoptions(@fminunc,'Display','iter-detailed','Algorithm','quasi-newton');

[xfinal fval] = fminunc(@cos,1,opts);

yields the following display:

3 Examining Results

3-10

Iterations and Function Counts

In general, Optimization Toolbox solvers iterate to find an optimum. This means a solver
begins at an initial value x0, performs some intermediate calculations that eventually
lead to a new point x1, and then repeats the process to find successive approximations x2,
x3, ... of the local minimum. Processing stops after some number of iterations k.

At any step, intermediate calculations may involve evaluating the objective function and
constraints, if any, at points near the current iterate xi. For example, the solver may
estimate a gradient by finite differences. At each of these nearby points, the function
count (F-count) is increased by one.

• If there are no constraints, the F-count reports the total number of objective function
evaluations.

• If there are constraints, the F-count reports only the number of points where
function evaluations took place, not the total number of evaluations of constraint
functions.

• If there are many constraints, the F-count can be significantly less than the total
number of function evaluations.

F-count is a header in the iterative display for many solvers. For an example, see
“Interpreting the Result” on page 1-10.

The F-count appears in the output structure as output.funcCount. This enables
you to access the evaluation count programmatically. For more information on output
structures, see “Output Structures” on page 3-24.

Sometimes a solver attempts a step, and rejects the attempt. The trust-region,
trust-region-reflective, and trust-region-dogleg algorithms count these
failed attempts as iterations, and report the (unchanged) result in the iterative display.
The interior-point, active-set, and levenberg-marquardt algorithms do not
count such an attempt as an iteration, and do not report the attempt in the iterative
display. All attempted steps increase the F-count, regardless of the algorithm.

 First-Order Optimality Measure

3-11

First-Order Optimality Measure

In this section...

“What Is First-Order Optimality Measure?” on page 3-11
“Stopping Rules Related to First-Order Optimality” on page 3-11
“Unconstrained Optimality” on page 3-12
“Constrained Optimality Theory” on page 3-12
“Constrained Optimality in Solver Form” on page 3-14

What Is First-Order Optimality Measure?

First-order optimality is a measure of how close a point x is to optimal. Most
Optimization Toolbox solvers use this measure, though it has different definitions for
different algorithms. First-order optimality is a necessary condition, but it is not a
sufficient condition. In other words:

• The first-order optimality measure must be zero at a minimum.
• A point with first-order optimality equal to zero is not necessarily a minimum.

For general information about first-order optimality, see Nocedal and Wright [31]. For
specifics about the first-order optimality measures for Optimization Toolbox solvers, see
“Unconstrained Optimality” on page 3-12, “Constrained Optimality Theory” on page
3-12, and “Constrained Optimality in Solver Form” on page 3-14.

Stopping Rules Related to First-Order Optimality

The TolFun tolerance relates to the first-order optimality measure. Typically, if the first-
order optimality measure is less than TolFun, solver iterations end.

Some solvers or algorithms use relative first-order optimality as a stopping criterion.
Solver iterations end if the first-order optimality measure is less than μ times TolFun,
where μ is either:

• The infinity norm (maximum) of the gradient of the objective function at x0
• The infinity norm (maximum) of inputs to the solver, such as f or b in linprog or H

in quadprog

3 Examining Results

3-12

A relative measure attempts to account for the scale of a problem. Multiplying an
objective function by a very large or small number does not change the stopping condition
for a relative stopping criterion, but does change it for an unscaled one.

Solvers with enhanced exit messages state, in the stopping criteria details, when they
use relative first-order optimality.

Unconstrained Optimality

For a smooth unconstrained problem,

min (),
x

f x

the first-order optimality measure is the infinity norm (meaning maximum absolute
value) of ∇f(x), which is:

first-order optimality measure = max () () .
i i

f x f x— —() =
•

This measure of optimality is based on the familiar condition for a smooth function to
achieve a minimum: its gradient must be zero. For unconstrained problems, when the
first-order optimality measure is nearly zero, the objective function has gradient nearly
zero, so the objective function could be near a minimum. If the first-order optimality
measure is not small, the objective function is not minimal.

Constrained Optimality Theory

This section summarizes the theory behind the definition of first-order optimality
measure for constrained problems. The definition as used in Optimization Toolbox
functions is in “Constrained Optimality in Solver Form” on page 3-14.

For a smooth constrained problem, let g and h be vector functions representing all
inequality and equality constraints respectively (meaning bound, linear, and nonlinear
constraints):

min () () , () .
x

f x g x h x subject to £ =0 0

The meaning of first-order optimality in this case is more complex than for unconstrained
problems. The definition is based on the Karush-Kuhn-Tucker (KKT) conditions. The

 First-Order Optimality Measure

3-13

KKT conditions are analogous to the condition that the gradient must be zero at a
minimum, modified to take constraints into account. The difference is that the KKT
conditions hold for constrained problems.

The KKT conditions use the auxiliary Lagrangian function:

L x f x g x h xg i i h i i(,) () () ()., ,l l l= + +Â Â

The vector λ, which is the concatenation of λg and λh, is the Lagrange multiplier vector.
Its length is the total number of constraints.

The KKT conditions are:

—
x
L x(,) ,l = 0

lg i ig x i, () ,= "0

g x

h x

g i

() ,

() ,

,

£

=

≥

Ï

Ì
Ô

Ó
Ô

0

0

0l .

Solvers do not use the three expressions in Equation 3-4 in the calculation of optimality
measure.

The optimality measure associated with Equation 3-2 is

— — — —x g i i h i h iL x f x g x h x(, () () () ., , ,l l l= + + ÂÂ

The optimality measure associated with Equation 3-3 is

l
g

g x

u ruuu

() ,

where the norm in Equation 3-6 means infinity norm (maximum) of the vector lg i ig x, ()
u ruuuuu

.

3 Examining Results

3-14

The combined optimality measure is the maximum of the values calculated in
Equation 3-5 and Equation 3-6. Solvers that accept nonlinear constraint functions
report constraint violations g(x) > 0 or |h(x)| > 0 as TolCon tolerance violations. See
“Tolerances and Stopping Criteria” on page 2-61.

Constrained Optimality in Solver Form

Most constrained toolbox solvers separate their calculation of first-order optimality
measure into bounds, linear functions, and nonlinear functions. The measure is
the maximum of the following two norms, which correspond to Equation 3-5 and
Equation 3-6:

— —x
T

ineqlin
T

eqlinL x f x A Aeq(, ()l l l= + +

 ++ + ÂÂl lineqnonlin i i eqnonlin i ic x ceq x, ,() () ,— —

l x x ui i lower i i i upper i- -l l, ,,
u ruuuuuuuuuuuuuuu u ruuuuuuuuuuuuuuuuu u ruuuuuuuuuuuuuuuuuuuu

, () , (),Ax b c xi ineqlin i i ineqno- l l nnlin i, ,
u ruuuuuuuuuuuuuuuuuuu

where the norm of the vectors in Equation 3-7 and Equation 3-8 is the infinity norm
(maximum). The subscripts on the Lagrange multipliers correspond to solver Lagrange
multiplier structures. See “Lagrange Multiplier Structures” on page 3-25. The
summations in Equation 3-7 range over all constraints. If a bound is ±Inf, that term is
not constrained, so it is not part of the summation.

Linear Equalities Only

For some large-scale problems with only linear equalities, the first-order optimality
measure is the infinity norm of the projected gradient. In other words, the first-order
optimality measure is the size of the gradient projected onto the null space of Aeq.

Bounded Least-Squares and Trust-Region-Reflective Solvers

For least-squares solvers and trust-region-reflective algorithms, in problems with bounds
alone, the first-order optimality measure is the maximum over i of |vi*gi|. Here gi is the
ith component of the gradient, x is the current point, and

v
x b b

i
i i i=

- if the negative gradient points toward bound

ot1 hherwise.

Ï
Ì
Ó

 First-Order Optimality Measure

3-15

If xi is at a bound, vi is zero. If xi is not at a bound, then at a minimizing point the
gradient gi should be zero. Therefore the first-order optimality measure should be zero at
a minimizing point.

3 Examining Results

3-16

Iterative Display

In this section...

“Introduction” on page 3-16
“Common Headings” on page 3-17
“Function-Specific Headings” on page 3-17

Introduction

Iterative display is a table of statistics describing the calculations in each iteration of
a solver. The statistics depend on both the solver and the solver algorithm. For more
information about iterations, see “Iterations and Function Counts” on page 3-10. The
table appears in the MATLAB Command Window when you run solvers with appropriate
options.

Obtain iterative display by using optimoptions to create options with the Display
option set to 'iter' or 'iter-detailed'. For example:

options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');

[x fval exitflag output] = fminunc(@sin,0,options);

 First-order

Iteration Func-count f(x) Step-size optimality

 0 2 0 1

 1 4 -0.841471 1 0.54

 2 8 -1 0.484797 0.000993

 3 10 -1 1 5.62e-005

 4 12 -1 1 0

Local minimum found.

Optimization completed because the size of the gradient

is less than the default value of the function tolerance.

You can also obtain iterative display by using the Optimization app. Select Display to
command window > Level of display > iterative or iterative with detailed
message.

 Iterative Display

3-17

Iterative display is available for all solvers except:

• linprog 'active-set' algorithm
• lsqlin 'trust-region-reflective' and 'active-set' algorithms
• lsqnonneg

• quadprog 'trust-region-reflective' and 'active-set' algorithms

Common Headings

The following table lists some common headings of iterative display.

Heading Information Displayed

f(x) Current objective function value. For fsolve, the square of
the norm of the function value vector.

First-order

optimality

First-order optimality measure (see “First-Order
Optimality Measure” on page 3-11).

Func-count or F-count Number of function evaluations; see “Iterations and
Function Counts” on page 3-10.

Iteration or Iter Iteration number; see “Iterations and Function Counts” on
page 3-10.

Norm of step Size of the current step (size is the Euclidean norm, or 2-
norm).

Function-Specific Headings

The following sections describe headings of iterative display whose meaning is specific to
the optimization function you are using:

• “fgoalattain, fmincon, fminimax, and fseminf” on page 3-18
• “fminbnd and fzero” on page 3-19
• “fminsearch” on page 3-20

3 Examining Results

3-18

• “fminunc” on page 3-20
• “fsolve” on page 3-21
• “intlinprog” on page 3-21
• “linprog” on page 3-22
• “lsqnonlin and lsqcurvefit” on page 3-22
• “quadprog” on page 3-23

fgoalattain, fmincon, fminimax, and fseminf

The following table describes the headings specific to fgoalattain, fmincon,
fminimax, and fseminf.

fgoalattain, fmincon,
fminimax, or fseminf
Heading

Information Displayed

Attainment factor Value of the attainment factor for fgoalattain.
CG-iterations Number of conjugate gradient iterations taken in the current

iteration (see “Preconditioned Conjugate Gradient Method” on
page 6-23).

Directional

derivative

Gradient of the objective function along the search direction.

Feasibility Maximum constraint violation, where satisfied inequality
constraints count as 0.

Line search

steplength

Multiplicative factor that scales the search direction (see
Equation 6-45).

Max constraint Maximum violation among all constraints, both internally
constructed and user-provided; can be negative when no
constraint is binding.

Objective value Objective function value of the nonlinear programming
reformulation of the minimax problem for fminimax.

Procedure Hessian update procedures:

• Infeasible start point

• Hessian not updated

• Hessian modified

 Iterative Display

3-19

fgoalattain, fmincon,
fminimax, or fseminf
Heading

Information Displayed

• Hessian modified twice

For more information, see “Updating the Hessian Matrix” on
page 6-30.

QP subproblem procedures:

• dependent — There are dependent (redundant) equality
constraints that the solver detected and removed.

• Infeasible — The QP subproblem with linearized
constraints is infeasible.

• Overly constrained — The QP subproblem with
linearized constraints is infeasible.

• Unbounded — The QP subproblem is feasible with large
negative curvature.

• Ill-posed — The QP subproblem search direction is too
small.

• Unreliable — The QP subproblem seems to be ill-
conditioned.

Steplength Multiplicative factor that scales the search direction (see
Equation 6-45).

Trust-region radius Current trust-region radius.

fminbnd and fzero

The following table describes the headings specific to fminbnd and fzero.

fminbnd or fzero
Heading

Information Displayed

Procedure Procedures for fminbnd:

• initial

• golden (golden section search)
• parabolic (parabolic interpolation)

3 Examining Results

3-20

fminbnd or fzero
Heading

Information Displayed

Procedures for fzero:

• initial (initial point)
• search (search for an interval containing a zero)
• bisection

• interpolation (linear interpolation or inverse quadratic
interpolation)

x Current point for the algorithm

fminsearch

The following table describes the headings specific to fminsearch.

fminsearch Heading Information Displayed

min f(x) Minimum function value in the current simplex.
Procedure Simplex procedure at the current iteration. Procedures include:

• initial simplex

• expand

• reflect

• shrink

• contract inside

• contract outside

For details, see “fminsearch Algorithm” on page 6-10.

fminunc

The following table describes the headings specific to fminunc.

fminunc Heading Information Displayed

CG-iterations Number of conjugate gradient iterations taken in the current
iteration (see “Preconditioned Conjugate Gradient Method” on
page 6-23)

 Iterative Display

3-21

fminunc Heading Information Displayed

Line search

steplength

Multiplicative factor that scales the search direction (see
Equation 6-11)

The fminunc 'quasi-newton' algorithm can issue a skipped update message to
the right of the First-order optimality column. This message means that fminunc
did not update its Hessian estimate, because the resulting matrix would not have been
positive definite. The message usually indicates that the objective function is not smooth
at the current point.

fsolve

The following table describes the headings specific to fsolve.

fsolve Heading Information Displayed

Directional

derivative

Gradient of the function along the search direction

Lambda λk value defined in “Levenberg-Marquardt Method” on page
10-7

Residual Residual (sum of squares) of the function
Trust-region

radius

Current trust-region radius (change in the norm of the trust-
region radius)

intlinprog

The following table describes the headings specific to intlinprog.

linprog Heading Information Displayed

nodes explored Cumulative number of explored nodes.
total time (s) Time in seconds since intlinprog started.
num int

solution

Number of integer feasible points found.

integer fval Objective function value of the best integer feasible point found.
This is an upper bound for the final objective function value.

relative gap

(%)
100

1

()
,

b a

b

-

+

3 Examining Results

3-22

linprog Heading Information Displayed

where

• b is the objective function value of the best integer feasible
point.

• a is the best lower bound on the objective function value.

linprog

The following table describes the headings specific to linprog.

linprog Heading Information Displayed

Dual Infeas

A'*y+z-w-f

Dual infeasibility.

Duality Gap

x'*z+s'*w

Duality gap (see “Interior-Point-Legacy Linear Programming” on
page 8-8) between the primal objective and the dual objective.
s and w appear only in this equation if there are finite upper
bounds.

Objective f'*x Current objective value.
Primal Infeas

A*x-b

Primal infeasibility.

Total Rel Error Total relative error, described at the end of “Main Algorithm” on
page 8-8.

lsqnonlin and lsqcurvefit

The following table describes the headings specific to lsqnonlin and lsqcurvefit.

lsqnonlin or
lsqcurvefit Heading

Information Displayed

Directional

derivative

Gradient of the function along the search direction

Lambda λk value defined in “Levenberg-Marquardt Method” on page
10-7

Resnorm Value of the squared 2-norm of the residual at x
Residual Residual vector of the function

 Iterative Display

3-23

quadprog

The following table describes the headings specific to quadprog.

quadprog Heading Information Displayed

Feasibility Maximum constraint violation, where satisfied inequality
constraints count as 0.

Total relative

error

Total relative error is a measure of infeasibility, as defined in
“Total Relative Error” on page 9-6

3 Examining Results

3-24

Output Structures

An output structure contains information on a solver's result. All solvers can return
an output structure. To obtain an output structure, invoke the solver with the output
structure in the calling syntax. For example, to get an output structure from lsqnonlin,
use the syntax

[x,resnorm,residual,exitflag,output] = lsqnonlin(...)

You can also obtain an output structure by running a problem using the Optimization
app. All results exported from Optimization app contain an output structure.

The contents of the output structure are listed in each solver's reference pages. For
example, the output structure returned by lsqnonlin contains firstorderopt,
iterations, funcCount, cgiterations, stepsize, algorithm, and message. To
access, for example, the message, enter output.message.

Optimization app exports results in a structure. The results structure contains the
output structure. To access, for example, the number of iterations, use the syntax
optimresults.output.iterations.

You can also see the contents of an output structure by double-clicking the output
structure in the MATLAB Workspace pane.

 Lagrange Multiplier Structures

3-25

Lagrange Multiplier Structures

Constrained optimization involves a set of Lagrange multipliers, as described in
“First-Order Optimality Measure” on page 3-11. Solvers return estimated Lagrange
multipliers in a structure. The structure is called lambda, since the conventional symbol
for Lagrange multipliers is the Greek letter lambda (λ). The structure separates the
multipliers into the following types, called fields:

• lower, associated with lower bounds
• upper, associated with upper bounds
• eqlin, associated with linear equalities
• ineqlin, associated with linear inequalities
• eqnonlin, associated with nonlinear equalities
• ineqnonlin, associated with nonlinear inequalities

To access, for example, the nonlinear inequality field of a Lagrange multiplier structure,
enter lambda.inqnonlin. To access the third element of the Lagrange multiplier
associated with lower bounds, enter lambda.lower(3).

The content of the Lagrange multiplier structure depends on the solver. For example,
linear programming has no nonlinearities, so it does not have eqnonlin or ineqnonlin
fields. Each applicable solver's function reference pages contains a description of its
Lagrange multiplier structure under the heading “Outputs.”

3 Examining Results

3-26

Hessian

In this section...

“fminunc Hessian” on page 3-26
“fmincon Hessian” on page 3-27

fminunc Hessian

The Hessian for an unconstrained problem is the matrix of second derivatives of the
objective function f:

Hessian H
f

x x
ij

i j

=
∂

∂ ∂

2

.

• Quasi-Newton Algorithm — fminunc returns an estimated Hessian matrix at the
solution. It computes the estimate by finite differences.

• Trust-Region Algorithm — fminunc returns a Hessian matrix at the next-to-last
iterate.

• If you supply a Hessian in the objective function, fminunc returns this Hessian.
• If you supply a HessMult function, fminunc returns the Hinfo matrix from the

HessMult function. For more information, see HessMult in the trust-region
section of the fminunc options table.

• Otherwise, fminunc returns an approximation from a sparse finite difference
algorithm on the gradients.

This Hessian is accurate for the next-to-last iterate. However, the next-to-last iterate
might not be close to the final point.

The reason the trust-region algorithm returns the Hessian at the next-to-last
point is for efficiency. fminunc uses the Hessian internally to compute its next step.
When fminunc reaches a stopping condition, it does not need to compute the next
step, so does not compute the Hessian.

 Hessian

3-27

fmincon Hessian

The Hessian for a constrained problem is the Hessian of the Lagrangian. For an objective
function f, nonlinear inequality constraint vector c, and nonlinear equality constraint
vector ceq, the Lagrangian is

L f c ceqi i

i

j j

j

= + +Â Âl l .

The λi are Lagrange multipliers; see “First-Order Optimality Measure” on page 3-11 and
“Lagrange Multiplier Structures” on page 3-25. The Hessian of the Lagrangian is

H L f c ceqi i

i

j j

j

= — = — + — + —Â Â2 2 2 2l l .

fmincon has four algorithms, with several options for Hessians, as described in “fmincon
Trust Region Reflective Algorithm” on page 6-21, “fmincon Active Set Algorithm” on
page 6-26, and “fmincon Interior Point Algorithm” on page 6-37. fmincon returns
the following for the Hessian:

• active-set or sqp Algorithm — fmincon returns the Hessian approximation
it computes at the next-to-last iterate. fmincon computes a quasi-Newton
approximation of the Hessian matrix at the solution in the course of its iterations.
This approximation does not, in general, match the true Hessian in every component,
but only in certain subspaces. Therefore the Hessian that fmincon returns
can be inaccurate. For more details of the active-set calculation, see “SQP
Implementation” on page 6-29.

• trust-region-reflective Algorithm — fmincon returns the Hessian it
computes at the next-to-last iterate.

• If you supply a Hessian in the objective function, fmincon returns this Hessian.
• If you supply a HessMult function, fmincon returns the Hinfo matrix from

the HessMult function. For more information, see Trust-Region-Reflective
Algorithm in fmincon options.

• Otherwise, fmincon returns an approximation from a sparse finite difference
algorithm on the gradients.

This Hessian is accurate for the next-to-last iterate. However, the next-to-last iterate
might not be close to the final point.

3 Examining Results

3-28

The reason the trust-region-reflective algorithm returns the Hessian at the
next-to-last point is for efficiency. fmincon uses the Hessian internally to compute its
next step. When fmincon reaches a stopping condition, it does not need to compute
the next step, so does not compute the Hessian.

• interior-point Algorithm

• If the Hessian option is lbfgs or fin-diff-grads, or if you supply a Hessian
multiply function (HessMult), fmincon returns [] for the Hessian.

• If the Hessian option is bfgs (the default), fmincon returns a quasi-Newton
approximation to the Hessian at the final point. This Hessian can be inaccurate, as
in the active-set or sqp algorithm Hessian.

• If the Hessian option is user-supplied, fmincon returns the user-supplied
Hessian at the final point.

More About
• “Including Derivatives” on page 2-20
• “Hessian” on page 14-60

 Plot Functions

3-29

Plot Functions
In this section...

“Plot an Optimization During Execution” on page 3-29
“Using a Plot Function” on page 3-29

Plot an Optimization During Execution

You can plot various measures of progress during the execution of a solver. Set the
PlotFcns name-value pair in optimoptions, and specify one or more plotting functions
for the solver to call at each iteration. Pass a function handle or cell array of function
handles.

There are a variety of predefined plot functions available. See:

• The PlotFcns option description in the solver function reference page
• Optimization app > Options > Plot functions

You can also use a custom-written plot function. Write a function file using the same
structure as an output function. For more information on this structure, see “Output
Function” on page 13-20.

Using a Plot Function

This example shows how to use a plot function to view the progress of the fmincon
interior-point algorithm. The problem is taken from the Getting Started “Solve a
Constrained Nonlinear Problem” on page 1-3. The first part of the example shows how to
run the optimization using the Optimization app. The second part shows how to run the
optimization from the command line.

Note: The Optimization app warns that it will be removed in a future release.

Running the Optimization Using the Optimization App

1 Write the nonlinear objective and constraint functions, including the derivatives:

function [f g H] = rosenboth(x)

% ROSENBOTH returns both the value y of Rosenbrock's function

% and also the value g of its gradient and H the Hessian.

3 Examining Results

3-30

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1

 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

 if nargout > 2

 H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

 -400*x(1), 200];

 end

end

Save this file as rosenboth.m.

function [c,ceq,gc,gceq] = unitdisk2(x)

% UNITDISK2 returns the value of the constraint

% function for the disk of radius 1 centered at

% [0 0]. It also returns the gradient.

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

if nargout > 2

 gc = [2*x(1);2*x(2)];

 gceq = [];

end

Save this file as unitdisk2.m.
2 Start the Optimization app by entering optimtool at the command line.
3 Set up the optimization:

• Choose the fmincon solver.
• Choose the Interior point algorithm.
• Set the objective function to @rosenboth.
• Choose Gradient supplied for the objective function derivative.
• Set the start point to [0 0].
• Set the nonlinear constraint function to @unitdisk2.
• Choose Gradient supplied for the nonlinear constraint derivatives.

Your Problem Setup and Results panel should match the following figure.

 Plot Functions

3-31

4 Choose three plot functions in the Options pane: Current point, Function value,
and First order optimality.

5 Click the Start button under Run solver and view results.
6 The output appears as follows in the Optimization app.

3 Examining Results

3-32

In addition, the following three plots appear in a separate window.

 Plot Functions

3-33

• The “Current Point” plot graphically shows the minimizer [0.786,0.618], which
is reported as the Final point in the Run solver and view results pane. This plot
updates at each iteration, showing the intermediate iterates.

• The “Current Function Value” plot shows the objective function value at all iterations.
This graph is nearly monotone, showing fmincon reduces the objective function at
almost every iteration.

• The “First-order Optimality” plot shows the first-order optimality measure at all
iterations.

3 Examining Results

3-34

Running the Optimization from the Command Line

1 Write the nonlinear objective and constraint functions, including the derivatives, as
shown in “Running the Optimization Using the Optimization App” on page 3-29.

2 Create an options structure that includes calling the three plot functions:

options = optimoptions(@fmincon,'Algorithm','interior-point',...

 'GradObj','on','GradConstr','on','PlotFcns',{@optimplotx,...

 @optimplotfval,@optimplotfirstorderopt});

3 Call fmincon:

x = fmincon(@rosenboth,[0 0],[],[],[],[],[],[],...

 @unitdisk2,options)

4 fmincon gives the following output:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the default

value of the function tolerance, and constraints are satisfied

to within the default value of the constraint tolerance.

x =

 0.7864 0.6177

fmincon also displays the three plot functions, shown at the end of “Running the
Optimization Using the Optimization App” on page 3-29.

 Output Functions

3-35

Output Functions

In this section...

“What Is an Output Function?” on page 3-35
“Example: Using Output Functions” on page 3-35

What Is an Output Function?

For some problems, you might want output from an optimization algorithm at
each iteration. For example, you might want to find the sequence of points that the
algorithm computes and plot those points. To do this, create an output function that the
optimization function calls at each iteration. See “Output Function” on page 13-20 for
details and syntax.

Generally, the solvers that can employ an output function are the ones that can take
nonlinear functions as inputs. You can determine which solvers can have an output
function by looking in the Options section of function reference pages, or by checking
whether the Output function option is available in the Optimization app for a solver.

Example: Using Output Functions

• “What the Example Contains” on page 3-35
• “Writing the Output Function” on page 3-36
• “Writing the Example Function File” on page 3-37
• “Running the Example” on page 3-38

What the Example Contains

The following example continues the one in “Nonlinear Inequality Constraints” on page
6-45, which calls the function fmincon at the command line to solve a nonlinear,
constrained optimization problem. The example in this section uses a function file to call
fmincon. The file also contains all the functions needed for the example, including:

• The objective function
• The constraint function
• An output function that records the history of points computed by the algorithm for

fmincon. At each iteration of the algorithm for fmincon, the output function:

3 Examining Results

3-36

• Plots the current point computed by the algorithm.
• Stores the point and its corresponding objective function value in a variable called

history, and stores the current search direction in a variable called searchdir.
The search direction is a vector that points in the direction from the current point
to the next one.

The code for the file is here: “Writing the Example Function File” on page 3-37.

Writing the Output Function

You specify the output function in options, such as

options = optimoptions(@fmincon,'OutputFcn',@outfun)

where outfun is the name of the output function. When you call an optimization
function with options as an input, the optimization function calls outfun at each
iteration of its algorithm.

In general, outfun can be any MATLAB function, but in this example, it is a nested
function of the function file described in “Writing the Example Function File” on page
3-37. The following code defines the output function:

function stop = outfun(x,optimValues,state)

stop = false;

 switch state

 case 'init'

 hold on

 case 'iter'

 % Concatenate current point and objective function

 % value with history. x must be a row vector.

 history.fval = [history.fval; optimValues.fval];

 history.x = [history.x; x];

 % Concatenate current search direction with

 % searchdir.

 searchdir = [searchdir;...

 optimValues.searchdirection'];

 plot(x(1),x(2),'o');

 % Label points with iteration number.

 % Add .15 to x(1) to separate label from plotted 'o'

 text(x(1)+.15,x(2),num2str(optimValues.iteration));

 case 'done'

 hold off

 Output Functions

3-37

 otherwise

 end

end

See “ Using Handles to Store Function Parameters” in the MATLAB Programming
Fundamentals documentation for more information about nested functions.

The arguments that the optimization function passes to outfun are:

• x — The point computed by the algorithm at the current iteration
• optimValues — Structure containing data from the current iteration

The example uses the following fields of optimValues:

• optimValues.iteration — Number of the current iteration
• optimValues.fval — Current objective function value
• optimValues.searchdirection — Current search direction

• state — The current state of the algorithm ('init', 'interrupt', 'iter', or
'done')

For more information about these arguments, see “Output Function” on page 13-20.

Writing the Example Function File

To create the function file for this example:

1 Open a new file in the MATLAB Editor.
2 Copy and paste the following code into the file:

function [history,searchdir] = runfmincon

% Set up shared variables with OUTFUN

history.x = [];

history.fval = [];

searchdir = [];

% call optimization

x0 = [-1 1];

options = optimoptions(@fmincon,'OutputFcn',@outfun,...

 'Display','iter','Algorithm','active-set');

xsol = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

 function stop = outfun(x,optimValues,state)

3 Examining Results

3-38

 stop = false;

 switch state

 case 'init'

 hold on

 case 'iter'

 % Concatenate current point and objective function

 % value with history. x must be a row vector.

 history.fval = [history.fval; optimValues.fval];

 history.x = [history.x; x];

 % Concatenate current search direction with

 % searchdir.

 searchdir = [searchdir;...

 optimValues.searchdirection'];

 plot(x(1),x(2),'o');

 % Label points with iteration number and add title.

 % Add .15 to x(1) to separate label from plotted 'o'

 text(x(1)+.15,x(2),...

 num2str(optimValues.iteration));

 title('Sequence of Points Computed by fmincon');

 case 'done'

 hold off

 otherwise

 end

 end

 function f = objfun(x)

 f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) +...

 2*x(2) + 1);

 end

 function [c, ceq] = confun(x)

 % Nonlinear inequality constraints

 c = [1.5 + x(1)*x(2) - x(1) - x(2);

 -x(1)*x(2) - 10];

 % Nonlinear equality constraints

 ceq = [];

 end

end

3 Save the file as runfmincon.m in a folder on the MATLAB path.

Running the Example

To run the example, enter:

 Output Functions

3-39

[history searchdir] = runfmincon;

This displays the following iterative output in the Command Window.
 Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

 0 3 1.8394 0.5 Infeasible

 1 6 1.85127 -0.09197 1 0.109 0.778 start point

 2 9 0.300167 9.33 1 -0.117 0.313 Hessian modified

 3 12 0.529835 0.9209 1 0.12 0.232 twice

 4 16 0.186965 -1.517 0.5 -0.224 0.13

 5 19 0.0729085 0.3313 1 -0.121 0.054

 6 22 0.0353323 -0.03303 1 -0.0542 0.0271

 7 25 0.0235566 0.003184 1 -0.0271 0.00587

 8 28 0.0235504 9.032e-008 1 -0.0146 8.51e-007

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Active inequalities (to within options.TolCon = 1e-006):

 lower upper ineqlin ineqnonlin

 1

 2

The output history is a structure that contains two fields:

history =

 x: [9x2 double]

 fval: [9x1 double]

The fval field contains the objective function values corresponding to the sequence of
points computed by fmincon:

history.fval

ans =

 1.8394

 1.8513

 0.3002

 0.5298

 0.1870

 0.0729

 0.0353

 0.0236

 0.0236

These are the same values displayed in the iterative output in the column with header
f(x).

3 Examining Results

3-40

The x field of history contains the sequence of points computed by the algorithm:

history.x

ans =

 -1.0000 1.0000

 -1.3679 1.2500

 -5.5708 3.4699

 -4.8000 2.2752

 -6.7054 1.2618

 -8.0679 1.0186

 -9.0230 1.0532

 -9.5471 1.0471

 -9.5474 1.0474

This example displays a plot of this sequence of points, in which each point is labeled by
its iteration number.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
1

1.5

2

2.5

3

3.5

0

1

2

3

4

5678 0

Sequence of Points Computed by fmincon

1

2

3

4

5678

The optimal point occurs at the eighth iteration. Note that the last two points in the
sequence are so close that they overlap.

The second output argument, searchdir, contains the search directions for fmincon at
each iteration. The search direction is a vector pointing from the point computed at the
current iteration to the point computed at the next iteration:

 Output Functions

3-41

searchdir =

 -0.3679 0.2500

 -4.2029 2.2199

 0.7708 -1.1947

 -3.8108 -2.0268

 -1.3625 -0.2432

 -0.9552 0.0346

 -0.5241 -0.0061

 -0.0003 0.0003

4

Steps to Take After Running a Solver

• “Overview of Next Steps” on page 4-2
• “When the Solver Fails” on page 4-3
• “Solver Takes Too Long” on page 4-11
• “When the Solver Might Have Succeeded” on page 4-15
• “When the Solver Succeeds” on page 4-22
• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-31

4 Steps to Take After Running a Solver

4-2

Overview of Next Steps

This topic addresses questions you might have after running a solver. The questions
include:

• Is the answer reliable?
• What can you do if the solver fails?
• Is the minimum smaller than all other minima, or only smaller than nearby minima?

(“Local vs. Global Optima” on page 4-26)
• What can you do if the solver takes too long?

The list of questions is not exhaustive. It covers common or basic problems.

You can access relevant answers from many solvers' default exit message. The first line
of the exit message contains a link to a brief description of the result. This description
contains a link leading to documentation.

 When the Solver Fails

4-3

When the Solver Fails
In this section...

“Too Many Iterations or Function Evaluations” on page 4-3
“Converged to an Infeasible Point” on page 4-7
“Problem Unbounded” on page 4-9
“fsolve Could Not Solve Equation” on page 4-9

Too Many Iterations or Function Evaluations

The solver stopped because it reached a limit on the number of iterations or function
evaluations before it minimized the objective to the requested tolerance. To proceed, try
one or more of the following.
“1. Enable Iterative Display” on page 4-3
“2. Relax Tolerances” on page 4-4
“3. Start the Solver From Different Points” on page 4-4
“4. Check Objective and Constraint Function Definitions” on page 4-4
“5. Center and Scale Your Problem” on page 4-5
“6. Provide Gradient or Jacobian” on page 4-6
“7. Provide Hessian” on page 4-6

1. Enable Iterative Display

Set the Display option to 'iter'. This setting shows the results of the solver iterations.

To enable iterative display:

• Using the Optimization app, choose Level of display to be iterative or
iterative with detailed message.

• At the MATLAB command line, enter

options = optimoptions('solvername','Display','iter');

Call the solver using the options structure.

For an example of iterative display, see “Interpreting the Result” on page 1-10.
What to Look For in Iterative Display

• See if the objective function (Fval or f(x) or Resnorm) decreases. Decrease indicates
progress.

4 Steps to Take After Running a Solver

4-4

• Examine constraint violation (Max constraint) to ensure that it decreases towards
0. Decrease indicates progress.

• See if the first-order optimality decreases towards 0. Decrease indicates progress.
• See if the Trust-region radius decreases to a small value. This decrease indicates

that the objective might not be smooth.

What to Do

• If the solver seemed to progress:

1 Set MaxIter and/or MaxFunEvals to values larger than the defaults. You can see
the default values in the Optimization app, or in the Options table in the solver's
function reference pages.

2 Start the solver from its last calculated point.
• If the solver is not progressing, try the other listed suggestions.

2. Relax Tolerances

If TolX or TolFun, for example, are too small, the solver might not recognize when it has
reached a minimum; it can make futile iterations indefinitely.

To change tolerances using the Optimization app, use the Stopping criteria list at the
top of the Options pane.

To change tolerances at the command line, use optimoptions as described in “Set and
Change Options” on page 2-56.

The DiffMaxChange and DiffMinChange options can affect a solver's progress. These
options control the step size in finite differencing for derivative estimation.

3. Start the Solver From Different Points

See Change the Initial Point.

4. Check Objective and Constraint Function Definitions

For example, check that your objective and nonlinear constraint functions return the
correct values at some points. See Check your Objective and Constraint Functions. Check
that an infeasible point does not cause an error in your functions; see “Iterations Can
Violate Constraints” on page 2-32.

 When the Solver Fails

4-5

5. Center and Scale Your Problem

Solvers run more reliably when each coordinate has about the same effect on the
objective and constraint functions. Multiply your coordinate directions with appropriate
scalars to equalize the effect of each coordinate. Add appropriate values to certain
coordinates to equalize their size.
Example: Centering and Scaling

Consider minimizing 1e6*x(1)^2 + 1e-6*x(2)^2:

f = @(x) 10^6*x(1)^2 + 10^-6*x(2)^2;

Minimize f using the fminunc 'quasi-newton' algorithm:

opts = optimoptions('fminunc','Display','none','Algorithm','quasi-newton');

x = fminunc(f,[0.5;0.5],opts)

x =

 0

 0.5000

The result is incorrect; poor scaling interfered with obtaining a good solution.

Scale the problem. Set

D = diag([1e-3,1e3]);

fr = @(y) f(D*y);

y = fminunc(fr, [0.5;0.5], opts)

y =

 0

 0 % the correct answer

Similarly, poor centering can interfere with a solution.

fc = @(z)fr([z(1)-1e6;z(2)+1e6]); % poor centering

z = fminunc(fc,[.5 .5],opts)

z =

 1.0e+005 *

 10.0000 -10.0000 % looks good, but...

z - [1e6 -1e6] % checking how close z is to 1e6

ans =

4 Steps to Take After Running a Solver

4-6

 -0.0071 0.0078 % reveals a distance

fcc = @(w)fc([w(1)+1e6;w(2)-1e6]); % centered

w = fminunc(fcc,[.5 .5],opts)

w =

 0 0 % the correct answer

6. Provide Gradient or Jacobian

If you do not provide gradients or Jacobians, solvers estimate gradients and Jacobians
by finite differences. Therefore, providing these derivatives can save computational time,
and can lead to increased accuracy.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but finite differences around x always lead to an
infeasible point. In this case, a solver can fail or halt prematurely. Providing a gradient
allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and nonlinear
constraint functions. For details of the syntax, see “Writing Scalar Objective Functions”
on page 2-18, “Writing Vector and Matrix Objective Functions” on page 2-25, and
“Nonlinear Constraints” on page 2-35.

To check that your gradient or Jacobian function is correct, use the DerivativeCheck
option, as described in “Checking Validity of Gradients or Jacobians” on page 2-65.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients
and Hessians” on page 6-80.

For examples using gradients and Jacobians, see “Minimization with Gradient and
Hessian” on page 6-15, “Nonlinear Constraints with Gradients” on page 6-47,
“Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-80,
“Nonlinear Equations with Analytic Jacobian” on page 11-9, and “Nonlinear
Equations with Jacobian” on page 11-14.

7. Provide Hessian

Solvers often run more reliably and with fewer iterations when you supply a Hessian.

 When the Solver Fails

4-7

The following solvers and algorithms accept Hessians:

• fmincon interior-point. Write the Hessian as a separate function. For an
example, see “fmincon Interior-Point Algorithm with Analytic Hessian” on page
6-50.

• fmincon trust-region-reflective. Give the Hessian as the third output of the
objective function. For an example, see “Minimization with Dense Structured Hessian,
Linear Equalities” on page 6-75.

• fminunc trust-region. Give the Hessian as the third output of the objective
function. For an example, see “Minimization with Gradient and Hessian” on page
6-15.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients
and Hessians” on page 6-80.

Converged to an Infeasible Point

Usually, you get this result because the solver was unable to find a point satisfying all
constraints to within the TolCon constraint tolerance. However, the solver might have
located or started at a feasible point, and converged to an infeasible point. If the solver
lost feasibility, see “Solver Lost Feasibility” on page 4-8.

To proceed when the solver found no feasible point, try one or more of the following.
“1. Check Linear Constraints” on page 4-7
“2. Check Nonlinear Constraints” on page 4-8

1. Check Linear Constraints

Try finding a point that satisfies the bounds and linear constraints by solving a linear
programming problem.

1 Define a linear programming problem with an objective function that is always zero:

f = zeros(size(x0)); % assumes x0 is the initial point

2 Solve the linear programming problem to see if there is a feasible point:

xnew = linprog(f,A,b,Aeq,beq,lb,ub);

3 If there is a feasible point xnew, use xnew as the initial point and rerun your original
problem.

4 If there is no feasible point, your problem is not well-formulated. Check the
definitions of your bounds and linear constraints.

4 Steps to Take After Running a Solver

4-8

2. Check Nonlinear Constraints

After ensuring that your bounds and linear constraints are feasible (contain a point
satisfying all constraints), check your nonlinear constraints.

• Set your objective function to zero:

@(x)0

Run your optimization with all constraints and with the zero objective. If you find a
feasible point xnew, set x0 = xnew and rerun your original problem.

• If you do not find a feasible point using a zero objective function, use the zero objective
function with several initial points.

• If you find a feasible point xnew, set x0 = xnew and rerun your original problem.
• If you do not find a feasible point, try relaxing the constraints, discussed next.

Try relaxing your nonlinear inequality constraints, then tightening them.

1 Change the nonlinear constraint function c to return c-Δ, where Δ is a positive
number. This change makes your nonlinear constraints easier to satisfy.

2 Look for a feasible point for the new constraint function, using either your original
objective function or the zero objective function.

1 If you find a feasible point,

a Reduce Δ
b Look for a feasible point for the new constraint function, starting at the

previously found point.
2 If you do not find a feasible point, try increasing Δ and looking again.

If you find no feasible point, your problem might be truly infeasible, meaning that no
solution exists. Check all your constraint definitions again.

Solver Lost Feasibility

If the solver started at a feasible point, but converged to an infeasible point, try the
following techniques.

• Try a different algorithm. The fmincon 'sqp' and 'interior-point' algorithms
are usually the most robust, so try one or both of them first.

 When the Solver Fails

4-9

• Tighten the bounds. Give the highest lb and lowest ub vectors that you can. This
can help the solver to maintain feasibility. The fmincon 'sqp' and 'interior-
point' algorithms obey bounds at every iteration, so tight bounds help throughout
the optimization.

Problem Unbounded

The solver reached a point whose objective function was less than the objective limit
tolerance.

• Your problem might be truly unbounded. In other words, there is a sequence of points
xi with
lim f(xi) = –∞.

and such that all the xi satisfy the problem constraints.
• Check that your problem is formulated correctly. Solvers try to minimize objective

functions; if you want a maximum, change your objective function to its negative. For
an example, see “Maximizing an Objective” on page 2-28.

• Try scaling or centering your problem. See Center and Scale Your Problem.
• Relax the objective limit tolerance by using optimoptions to reduce the value of the

ObjectiveLimit tolerance.

fsolve Could Not Solve Equation

fsolve can fail to solve an equation for various reasons. Here are some suggestions for
how to proceed:

1 Try Changing the Initial Point. fsolve relies on an initial point. By giving it
different initial points, you increase the chances of success.

2 Check the definition of the equation to make sure that it is smooth. fsolve might
fail to converge for equations with discontinuous gradients, such as absolute value.
fsolve can fail to converge for functions with discontinuities.

3 Check that the equation is “square,” meaning equal dimensions for input and output
(has the same number of unknowns as values of the equation).

4 Change tolerances, especially TolFun and TolX. If you attempt to get high accuracy
by setting tolerances to very small values, fsolve can fail to converge. If you set
tolerances that are too high, fsolve can fail to solve an equation accurately.

4 Steps to Take After Running a Solver

4-10

5 Check the problem definition. Some problems have no real solution, such as
x^2 + 1 = 0.

 Solver Takes Too Long

4-11

Solver Takes Too Long

Solvers can take excessive time for various reasons. To diagnose the reason, use one or
more of the following techniques.

1. “Enable Iterative Display” on page 4-11
2. “Enable FunValCheck” on page 4-11
3. “Use Appropriate Tolerances” on page 4-12
4. “Use a Plot Function” on page 4-12
5. “Enable DerivativeCheck” on page 4-12
6. “Use Inf Instead of a Large, Arbitrary Bound” on page 4-13
7. “Use an Output Function” on page 4-13
8. “Use a Sparse Solver or a Multiply Function” on page 4-13
9. “Use Parallel Computing” on page 4-14

Enable Iterative Display

Set the Display option to 'iter'. This setting shows the results of the solver iterations.

To enable iterative display:

• Using the Optimization app, choose Level of display to be iterative or
iterative with detailed message.

• At the MATLAB command line, enter

options = optimoptions('solvername','Display','iter');

Call the solver using the options structure.

For an example of iterative display, see “Interpreting the Result” on page 1-10. For more
information, see “What to Look For in Iterative Display” on page 4-3.

Enable FunValCheck

Sometimes a solver fails because an objective function or nonlinear constraint function
returns a complex value, infinity, or NaN. To halt solver iterations in these cases, enable
the FunValCheck option.

4 Steps to Take After Running a Solver

4-12

• Using the Optimization app, check the box labeled Error if user-supplied function
returns Inf, NaN, or complex in the Function value check pane.

• At the MATLAB command line, enter

options = optimoptions('solvername','FunValCheck','on');

Call the solver using the options structure.

Use Appropriate Tolerances

Solvers can fail to converge if tolerances are too small, especially TolFun and TolX.

To change tolerances using the Optimization app, use the Stopping criteria list at the
top of the Options pane.

To change tolerances at the command line, use optimoptions as described in “Set and
Change Options” on page 2-56.

Use a Plot Function

You can obtain more visual or detailed information about solver iterations using a plot
function. For a list of the predefined plot functions, see Options > Plot functions in the
Optimization app. The Options section of your solver's function reference pages also lists
the plot functions.

To use a plot function:

• Using the Optimization app, check the boxes next to each plot function you wish to
use.

• At the MATLAB command line, enter

options = optimoptions('solvername','PlotFcns',{@plotfcn1,@plotfcn2,...});

Call the solver using the options structure.

For an example of using a plot function, see “Using a Plot Function” on page 3-29.

Enable DerivativeCheck

If you have supplied derivatives (gradients or Jacobians) to your solver, the solver can
fail to converge if the derivatives are inaccurate. For more information about using the

 Solver Takes Too Long

4-13

DerivativeCheck option, see “Checking Validity of Gradients or Jacobians” on page
2-65.

Use Inf Instead of a Large, Arbitrary Bound

If you use a large, arbitrary bound (upper or lower), a solver can take excessive time, or
even fail to converge. However, if you set Inf or -Inf as the bound, the solver can take
less time, and might converge better.

Why? An interior-point algorithm can set an initial point to the midpoint of finite bounds.
Or an interior-point algorithm can try to find a “central path” midway between finite
bounds. Therefore, a large, arbitrary bound can resize those components inappropriately.
In contrast, infinite bounds are ignored for these purposes.

Minor point: Some solvers use memory for each constraint, primarily via a constraint
Hessian. Setting a bound to Inf or -Inf means there is no constraint, so there is less
memory in use, because a constraint Hessian has lower dimension.

Use an Output Function

You can obtain detailed information about solver iterations using an output function.
Solvers call output functions at each iteration. You write output functions using the
syntax described in “Output Function” on page 13-20.

For an example of using an output function, see “Example: Using Output Functions” on
page 3-35.

Use a Sparse Solver or a Multiply Function

Large problems can cause MATLAB to run out of memory or time. Here are some
suggestions for using less memory:

• Use a large-scale algorithm if possible (see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-12). These algorithms include trust-region-reflective,
interior-point, the fminunc trust-region algorithm, the fsolve trust-
region-dogleg algorithm, and the Levenberg-Marquardt algorithm. In contrast,
the active-set, quasi-newton, and sqp algorithms are not large-scale.

Use sparse matrices for your linear constraints.

4 Steps to Take After Running a Solver

4-14

• Use a Jacobian multiply function or Hessian multiply function. For examples,
see “Jacobian Multiply Function with Linear Least Squares” on page 10-26,
“Quadratic Minimization with Dense, Structured Hessian” on page 9-19, and
“Minimization with Dense Structured Hessian, Linear Equalities” on page 6-75.

Use Parallel Computing

If you have a Parallel Computing Toolbox license, your solver might run faster using
parallel computing. For more information, see “Parallel Computing”.

 When the Solver Might Have Succeeded

4-15

When the Solver Might Have Succeeded

In this section...

“Final Point Equals Initial Point” on page 4-15
“Local Minimum Possible” on page 4-15

Final Point Equals Initial Point

The initial point seems to be a local minimum or solution because the first-order
optimality measure is close to 0. You might be unhappy with this result, since the solver
did not improve your initial point.

If you are unsure that the initial point is truly a local minimum, try:

1 Starting from different points — see Change the Initial Point.
2 Checking that your objective and constraints are defined correctly (for example,

do they return the correct values at some points?) — see Check your Objective and
Constraint Functions. Check that an infeasible point does not cause an error in your
functions; see “Iterations Can Violate Constraints” on page 2-32.

3 Changing tolerances, such as TolFun, TolCon, and TolX — see Use Appropriate
Tolerances.

4 Scaling your problem so each coordinate has about the same effect — see Rescale the
Problem.

5 Providing gradient and Hessian information — see Provide Analytic Gradients or
Jacobian and Provide a Hessian.

Local Minimum Possible

The solver might have reached a local minimum, but cannot be certain because the first-
order optimality measure is not less than the TolFun tolerance. (To learn more about
first-order optimality measure, see “First-Order Optimality Measure” on page 3-11.) To
see if the reported solution is reliable, consider the following suggestions.
“1. Nonsmooth Functions” on page 4-16
“2. Rerun Starting At Final Point” on page 4-16
“3. Try a Different Algorithm” on page 4-17
“4. Change Tolerances” on page 4-19
“5. Rescale the Problem” on page 4-20
“6. Check Nearby Points” on page 4-20

4 Steps to Take After Running a Solver

4-16

“7. Change Finite Differencing Options” on page 4-20
“8. Provide Analytic Gradients or Jacobian” on page 4-20
“9. Provide a Hessian” on page 4-21

1. Nonsmooth Functions

If you try to minimize a nonsmooth function, or have nonsmooth constraints, “Local
Minimum Possible” can be the best exit message. This is because the first-order
optimality conditions do not apply at a nonsmooth point.

To satisfy yourself that the solution is adequate, try to Check Nearby Points.

2. Rerun Starting At Final Point

Restarting an optimization at the final point can lead to a solution with a better first-
order optimality measure. A better (lower) first-order optimality measure gives you more
reason to believe that the answer is reliable.

For example, consider the following minimization problem, taken from an example
(echodemo symbolic_optim_demo):

options = optimoptions('fminunc','Algorithm','quasi-newton');

funh = @(x)log(1 + (x(1) - 4/3)^2 + 3*(x(2) - (x(1)^3 - x(1)))^2);

[xfinal fval exitflag] = fminunc(funh,[-1;2],options)

Local minimum possible.

fminunc stopped because it cannot decrease the

objective function along the current search direction.

xfinal =

 1.3333

 1.0370

fval =

 8.5265e-014

exitflag =

 5

The exit flag value of 5 indicates that the first-order optimality measure was above the
function tolerance. Run the minimization again starting from xfinal:

[xfinal2 fval2 exitflag2] = fminunc(funh,xfinal,options)

 When the Solver Might Have Succeeded

4-17

Local minimum found.

Optimization completed because the size of the gradient is

less than the default value of the function tolerance.

xfinal2 =

 1.3333

 1.0370

fval2 =

 6.5281e-014

exitflag2 =

 1

The local minimum is “found,” not “possible,” and the exitflag is 1, not 5. The two
solutions are virtually identical. Yet the second run has a more satisfactory exit message,
since the first-order optimality measure was low enough: 7.5996e-007, instead of
3.9674e-006.

3. Try a Different Algorithm

Many solvers give you a choice of algorithm. Different algorithms can lead to the use of
different stopping criteria.

For example, Rerun Starting At Final Point returns exitflag 5 from the first run. This
run uses the quasi-newton algorithm.

The trust-region algorithm requires a user-supplied gradient. betopt.m contains a
calculation of the objective function and gradient:

function [f gradf] = betopt(x)

g = 1 + (x(1)-4/3)^2 + 3*(x(2) - (x(1)^3-x(1)))^2;

f = log(g);

gradf(1) = 2*(x(1)-4/3) + 6*(x(2) - (x(1)^3-x(1)))*(1-3*x(1)^2);

gradf(1) = gradf(1)/g;

gradf(2) = 6*(x(2) - (x(1)^3 -x(1)))/g;

Running the optimization using the trust-region algorithm results in a different
exitflag:

options = optimoptions('fminunc','Algorithm','trust-region','GradObj','on');

4 Steps to Take After Running a Solver

4-18

[xfinal3 fval3 exitflag3] = fminunc(@betopt,[-1;2],options)

Local minimum possible.

fminunc stopped because the final change in function value

relative to its initial value is less than the default value

of the function tolerance.

xfinal3 =

 1.3333

 1.0370

fval3 =

 7.6659e-012

exitflag3 =

 3

The exit condition is better than the quasi-newton condition, though it is still not
the best. Rerunning the algorithm from the final point produces a better point, with
extremely small first-order optimality measure:

[xfinal4 fval4 eflag4 output4] = fminunc(@betopt,xfinal3,options)

Local minimum found.

Optimization completed because the size of the gradient is

less than the default value of the function tolerance.

xfinal4 =

 1.3333

 1.0370

fval4 =

 0

eflag4 =

 1

output4 =

 iterations: 1

 funcCount: 2

 cgiterations: 1

 When the Solver Might Have Succeeded

4-19

 firstorderopt: 7.5497e-11

 algorithm: 'trust-region'

 message: 'Local minimum found.

Optimization completed because the size o...'

 constrviolation: []

4. Change Tolerances

Sometimes tightening or loosening tolerances leads to a more satisfactory result. For
example, choose a smaller value of TolFun in the Try a Different Algorithm section:

options = optimoptions('fminunc','Algorithm','trust-region',...

 'TolFun',1e-8,'GradObj','on'); % default=1e-6

[xfinal3 fval3 eflag3 output3] = fminunc(@betopt,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient is

less than the selected value of the function tolerance.

xfinal3 =

 1.3333

 1.0370

fval3 =

 0

eflag3 =

 1

output3 =

 iterations: 15

 funcCount: 16

 cgiterations: 12

 firstorderopt: 7.5497e-11

 algorithm: 'trust-region'

 message: 'Local minimum found.

Optimization completed because the size...'

 constrviolation: []

fminunc took one more iteration than before, arriving at a better solution.

4 Steps to Take After Running a Solver

4-20

5. Rescale the Problem

Try to have each coordinate give about the same effect on the objective and constraint
functions by scaling and centering. For examples, see Center and Scale Your Problem.

6. Check Nearby Points

Evaluate your objective function and constraints, if they exist, at points near the final
point. If the final point is a local minimum, nearby feasible points have larger objective
function values. See Check Nearby Points for an example.

If you have a Global Optimization Toolbox license, try running the patternsearch
solver from the final point. patternsearch examines nearby points, and accepts all
types of constraints.

7. Change Finite Differencing Options

Central finite differences are more time-consuming to evaluate, but are much more
accurate. Use central differences when your problem can have high curvature.

To choose central differences at the command line, use optimoptions to set
'FinDiffType' to 'central', instead of the default 'forward'.

To choose central differences in the Optimization app, set Options > Approximated
derivatives > Type to be central differences.

8. Provide Analytic Gradients or Jacobian

If you do not provide gradients or Jacobians, solvers estimate gradients and Jacobians
by finite differences. Therefore, providing these derivatives can save computational time,
and can lead to increased accuracy.

For constrained problems, providing a gradient has another advantage. A solver can
reach a point x such that x is feasible, but finite differences around x always lead to an
infeasible point. In this case, a solver can fail or halt prematurely. Providing a gradient
allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and nonlinear
constraint functions. For details of the syntax, see “Writing Scalar Objective Functions”
on page 2-18, “Writing Vector and Matrix Objective Functions” on page 2-25, and
“Nonlinear Constraints” on page 2-35.

 When the Solver Might Have Succeeded

4-21

To check that your gradient or Jacobian function is correct, use the DerivativeCheck
option, as described in “Checking Validity of Gradients or Jacobians” on page 2-65.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients
and Hessians” on page 6-80.

For examples using gradients and Jacobians, see “Minimization with Gradient and
Hessian” on page 6-15, “Nonlinear Constraints with Gradients” on page 6-47,
“Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-80,
“Nonlinear Equations with Analytic Jacobian” on page 11-9, and “Nonlinear
Equations with Jacobian” on page 11-14.

9. Provide a Hessian

Solvers often run more reliably and with fewer iterations when you supply a Hessian.

The following solvers and algorithms accept Hessians:

• fmincon interior-point. Write the Hessian as a separate function. For an
example, see “fmincon Interior-Point Algorithm with Analytic Hessian” on page
6-50.

• fmincon trust-region-reflective. Give the Hessian as the third output of the
objective function. For an example, see “Minimization with Dense Structured Hessian,
Linear Equalities” on page 6-75.

• fminunc trust-region. Give the Hessian as the third output of the objective
function. For an example, see “Minimization with Gradient and Hessian” on page
6-15.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Symbolic Math Toolbox Calculates Gradients
and Hessians” on page 6-80.

The example in “Symbolic Math Toolbox Calculates Gradients and Hessians” on page
6-80 shows fmincon taking 77 iterations without a Hessian, but only 19 iterations
with a Hessian.

4 Steps to Take After Running a Solver

4-22

When the Solver Succeeds

In this section...

“What Can Be Wrong If The Solver Succeeds?” on page 4-22
“1. Change the Initial Point” on page 4-23
“2. Check Nearby Points” on page 4-24
“3. Check your Objective and Constraint Functions” on page 4-25
“Local vs. Global Optima” on page 4-26

What Can Be Wrong If The Solver Succeeds?

A solver can report that a minimization succeeded, and yet the reported solution can be
incorrect. For a rather trivial example, consider minimizing the function f(x) = x3 for x
between –2 and 2, starting from the point 1/3:

options = optimoptions('fmincon','Algorithm','active-set');

ffun = @(x)x^3;

xfinal = fmincon(ffun,1/3,[],[],[],[],-2,2,[],options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the default

valueof the function tolerance, and constraints were satisfied

to within the default value of the constraint tolerance.

No active inequalities.

xfinal =

 -1.5056e-008

The true minimum occurs at x = -2. fmincon gives this report because the function f(x)
is so flat near x = 0.

Another common problem is that a solver finds a local minimum, but you might want a
global minimum. For more information, see “Local vs. Global Optima” on page 4-26.

Lesson: check your results, even if the solver reports that it “found” a local minimum, or
“solved” an equation.

 When the Solver Succeeds

4-23

This section gives techniques for verifying results.

1. Change the Initial Point

The initial point can have a large effect on the solution. If you obtain the same or worse
solutions from various initial points, you become more confident in your solution.

For example, minimize f(x) = x3 + x4 starting from the point 1/4:

ffun = @(x)x^3 + x^4;

options = optimoptions('fminunc','Algorithm','quasi-newton');

[xfinal fval] = fminunc(ffun,1/4,options)

Local minimum found.

Optimization completed because the size of the gradient

is less than the default value of the function tolerance.

x =

 -1.6764e-008

fval =

 -4.7111e-024

Change the initial point by a small amount, and the solver finds a better solution:

[xfinal fval] = fminunc(ffun,1/4+.001,options)

Local minimum found.

Optimization completed because the size of the gradient

is less than the default value of the function tolerance.

xfinal =

 -0.7500

fval =

 -0.1055

x = -0.75 is the global solution; starting from other points cannot improve the solution.

For more information, see “Local vs. Global Optima” on page 4-26.

4 Steps to Take After Running a Solver

4-24

2. Check Nearby Points

To see if there are better values than a reported solution, evaluate your objective function
and constraints at various nearby points.

For example, with the objective function ffun from “What Can Be Wrong If The Solver
Succeeds?” on page 4-22, and the final point xfinal = -1.5056e-008, calculate
ffun(xfinal±Δ) for some Δ:

delta = .1;

[ffun(xfinal),ffun(xfinal+delta),ffun(xfinal-delta)]

ans =

 -0.0000 0.0011 -0.0009

The objective function is lower at ffun(xfinal-Δ), so the solver reported an incorrect
solution.

A less trivial example:

options = optimoptions(@fmincon,'Algorithm','active-set');

lb = [0,-1]; ub = [1,1];

ffun = @(x)(x(1)-(x(1)-x(2))^2);

[x fval exitflag] = fmincon(ffun,[1/2 1/3],[],[],[],[],...

 lb,ub,[],options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the default

valueof the function tolerance, and constraints were satisfied

to within the default value of the constraint tolerance.

Active inequalities (to within options.TolCon = 1e-006):

 lower upper ineqlin ineqnonlin

 1

x =

 1.0e-007 *

 0 0.1614

fval =

 -2.6059e-016

 When the Solver Succeeds

4-25

exitflag =

 1

Evaluating ffun at nearby feasible points shows that the solution x is not a true
minimum:

[ffun([0,.001]),ffun([0,-.001]),...

 ffun([.001,-.001]),ffun([.001,.001])]

ans =

 1.0e-003 *

 -0.0010 -0.0010 0.9960 1.0000

The first two listed values are smaller than the computed minimum fval.

If you have a Global Optimization Toolbox license, you can use the patternsearch
function to check nearby points.

3. Check your Objective and Constraint Functions

Double-check your objective function and constraint functions to ensure that they
correspond to the problem you intend to solve. Suggestions:

• Check the evaluation of your objective function at a few points.
• Check that each inequality constraint has the correct sign.
• If you performed a maximization, remember to take the negative of the reported

solution. (This advice assumes that you maximized a function by minimizing
the negative of the objective.) For example, to maximize f(x) = x – x2, minimize
g(x) = –x + x2:

options = optimoptions('fminunc','Algorithm','quasi-newton');

[x fval] = fminunc(@(x)-x+x^2,0,options)

Local minimum found.

Optimization completed because the size of the gradient is

less than the default value of the function tolerance.

x =

 0.5000

fval =

 -0.2500

4 Steps to Take After Running a Solver

4-26

The maximum of f is 0.25, the negative of fval.
• Check that an infeasible point does not cause an error in your functions; see

“Iterations Can Violate Constraints” on page 2-32.

Local vs. Global Optima

• “Why Didn't the Solver Find the Smallest Minimum?” on page 4-26
• “Searching for a Smaller Minimum” on page 4-27
• “Basins of Attraction” on page 4-27

Why Didn't the Solver Find the Smallest Minimum?

In general, solvers return a local minimum. The result might be a global minimum, but
there is no guarantee that it is. This section describes why solvers behave this way, and
gives suggestions for ways to search for a global minimum, if needed.

• A local minimum of a function is a point where the function value is smaller than at
nearby points, but possibly greater than at a distant point.

• A global minimum is a point where the function value is smaller than at all other
feasible points.

Local minimum

Global minimum

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can
be a global optimum.) They find the optimum in the basin of attraction of the starting
point. For more information about basins of attraction, see “Basins of Attraction” on page
4-27.

There are some exceptions to this general rule.

• Linear programming and positive definite quadratic programming problems are
convex, with convex feasible regions, so there is only one basin of attraction. Indeed,
under certain choices of options, linprog ignores any user-supplied starting point,
and quadprog does not require one, though supplying one can sometimes speed a
minimization.

 When the Solver Succeeds

4-27

• Global Optimization Toolbox functions, such as simulannealbnd, attempt to search
more than one basin of attraction.

Searching for a Smaller Minimum

If you need a global optimum, you must find an initial value for your solver in the basin
of attraction of a global optimum.

Suggestions for ways to set initial values to search for a global optimum:

• Use a regular grid of initial points.
• Use random points drawn from a uniform distribution if your problem has all its

coordinates bounded. Use points drawn from normal, exponential, or other random
distributions if some components are unbounded. The less you know about the
location of the global optimum, the more spread-out your random distribution should
be. For example, normal distributions rarely sample more than three standard
deviations away from their means, but a Cauchy distribution (density 1/(π(1 + x2)))
makes hugely disparate samples.

• Use identical initial points with added random perturbations on each coordinate,
bounded, normal, exponential, or other.

• If you have a Global Optimization Toolbox license, use the GlobalSearch or MultiStart
solvers. These solvers automatically generate random start points within bounds.

The more you know about possible initial points, the more focused and successful your
search will be.

Basins of Attraction

If an objective function f(x) is smooth, the vector –∇f(x) points in the direction where f(x)
decreases most quickly. The equation of steepest descent, namely

d

dt
x t f x t() (()),= -—

yields a path x(t) that goes to a local minimum as t gets large. Generally, initial values
x(0) that are near to each other give steepest descent paths that tend to the same
minimum point. The basin of attraction for steepest descent is the set of initial values
that lead to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different
basins of attraction with different line styles, and shows directions of steepest descent

4 Steps to Take After Running a Solver

4-28

with arrows. For this and subsequent figures, black dots represent local minima.
Every steepest descent path, starting at a point x(0), goes to the black dot in the basin
containing x(0).

f(x)

x

One-dimensional basins

The following figure shows how steepest descent paths can be more complicated in more
dimensions.

One basin of attraction, showing steepest descent paths from various starting points

The following figure shows even more complicated paths and basins of attraction.

 When the Solver Succeeds

4-29

Several basins of attraction

Constraints can break up one basin of attraction into several pieces. For example,
consider minimizing y subject to:

• y ≥ |x|
• y ≥ 5 – 4(x–2)2.

The figure shows the two basins of attraction with the final points.

4 Steps to Take After Running a Solver

4-30

The steepest descent paths are straight lines down to the constraint boundaries. From
the constraint boundaries, the steepest descent paths travel down along the boundaries.
The final point is either (0,0) or (11/4,11/4), depending on whether the initial x-value is
above or below 2.

 Optimizing a Simulation or Ordinary Differential Equation

4-31

Optimizing a Simulation or Ordinary Differential Equation

In this section...

“What Is Optimizing a Simulation or ODE?” on page 4-31
“Potential Problems and Solutions” on page 4-31
“Bibliography” on page 4-36

What Is Optimizing a Simulation or ODE?

Sometimes your objective function or nonlinear constraint function values are available
only by simulation or by numerical solution of an ordinary differential equation (ODE).
Such optimization problems have several common characteristics and challenges,
discussed in “Potential Problems and Solutions” on page 4-31.

To optimize a Simulink® model easily, try using Simulink Design Optimization™.

Potential Problems and Solutions

• “Problems in Finite Differences” on page 4-31
• “Suggestions for Finite Differences” on page 4-32
• “Problems in Stochastic Functions” on page 4-35
• “Suggestions for Stochastic Functions” on page 4-35
• “Common Calculation of Objective and Constraints” on page 4-35
• “Failure in Objective or Constraint Function Evaluation” on page 4-35
• “Suggestions for Evaluation Failures” on page 4-35

Problems in Finite Differences

Optimization Toolbox solvers use derivatives of objective and constraint functions
internally. By default, they estimate these derivatives using finite difference
approximations of the form

F x F x+() - ()d

d

4 Steps to Take After Running a Solver

4-32

or

F x F x+() - -()d d

d2
.

These finite difference approximations can be inaccurate because:

• A large value of δ allows more nonlinearity to affect the finite difference.
• A small value of δ leads to inaccuracy due to limited precision in numerics.

Specifically, for simulations and numerical solutions of ODEs:

• Simulations are often insensitive to small changes in parameters. This means that
if you use too small a perturbation δ, the simulation can return a spurious estimated
derivative of 0.

• Both simulations and numerical solutions of ODEs can have inaccuracies in their
function evaluations. These inaccuracies can be amplified in finite difference
approximations.

• Numerical solution of ODEs introduces noise at values much larger than machine
precision. This noise can be amplified in finite difference approximations.

• If an ODE solver uses variable step sizes, then sometimes the number of ODE steps
in the evaluation of F(x + δ) can differ from the number of steps in the evaluation of
F(x). This difference can lead to a spurious difference in the returned values, giving a
misleading estimate of the derivative.

Suggestions for Finite Differences

• “Avoid Finite Differences by Using Direct Search” on page 4-32
• “Set Larger Finite Differences” on page 4-33
• “Use a Gradient Evaluation Function” on page 4-33
• “Use Tighter ODE Tolerances” on page 4-34

Avoid Finite Differences by Using Direct Search

If you have a Global Optimization Toolbox license, you can try using patternsearch as
your solver. patternsearch does not attempt to estimate gradients, so does not suffer
from the limitations in “Problems in Finite Differences” on page 4-31.

 Optimizing a Simulation or Ordinary Differential Equation

4-33

If you use patternsearch for expensive (time-consuming) function evaluations, use the
Cache option:

options = psoptimset('Cache','on');

If you cannot use patternsearch, and have a relatively low-dimensional unconstrained
minimization problem, try fminsearch instead. fminsearch does not use finite
differences. However, fminsearch is not a fast or tunable solver.

Set Larger Finite Differences

You can sometimes avoid the problems in “Problems in Finite Differences” on page
4-31 by taking larger finite difference steps than the default.

• If you have MATLAB R2011b or later, set the FinDiffRelStep option to a value
larger than the default sqrt(eps) or eps^(1/3), such as:

• For R2011b–R2012b:

options = optimset('FinDiffRelStep',1e-3);

• For R2013a onwards:

options = optimoptions('solvername','FinDiffRelStep',1e-3);

If you have different scales in different components, set FinDiffRelStep to a vector
proportional to the component scales.

• If you have MATLAB R2011a or earlier, set the DiffMinChange option to a larger
value than the default 1e-8, and possibly set the DiffMaxChange option also, such
as:

options = optimset('DiffMinChange',1e-3,'DiffMaxChange',1);

Note: It is difficult to know how to set these finite difference sizes.

You can also try setting central finite differences:

options = optimoptions('solvername','FinDiffType','central');

Use a Gradient Evaluation Function

To avoid the problems of finite difference estimation, you can give an approximate
gradient function in your objective and nonlinear constraints. Remember to set the

4 Steps to Take After Running a Solver

4-34

GradObj option to 'on' using optimoptions, and, if relevant, also set the GradConstr
option to 'on'.

• For some ODEs, you can evaluate the gradient numerically at the same time as you
solve the ODE. For example, suppose the differential equation for your objective
function z(t,x) is

d

dt
z t x G z t x(,) (, ,),=

where x is the vector of parameters over which you minimize. Suppose x is a scalar.
Then the differential equation for its derivative y,

y t x
d

dx
z t x(,) (,)=

is

d

dt
y t x y t x

G z t x

z

G z t x

x
(,) (,) ,

(, ,) (, ,)
= +

∂

∂

∂

∂

where z(t,x) is the solution of the objective function ODE. You can solve for y(t,x)
in the same system of differential equations as z(t,x). This solution gives you an
approximated derivative without ever taking finite differences. For nonscalar x, solve
one ODE per component.

For theoretical and computational aspects of this method, see Leis and Kramer [2].
For computational experience with this and finite-difference methods, see Figure 7 of
Raue et al. [3].

• For some simulations, you can estimate a derivative within the simulation. For
example, the likelihood ratio technique described in Reiman and Weiss [4] or the
infinitesimal perturbation analysis technique analyzed in Heidelberger, Cao, Zazanis,
and Suri [1] estimate derivatives in the same simulation that estimates the objective
or constraint functions.

Use Tighter ODE Tolerances

You can use odeset to set the AbsTol or RelTol ODE solver tolerances to values
below their defaults. However, choosing too small a tolerance can lead to slow solutions,
convergence failure, or other problems. Never choose a tolerance less than 1e-9 for

 Optimizing a Simulation or Ordinary Differential Equation

4-35

RelTol. The lower limit on each component of AbsTol depends on the scale of your
problem, so there is no advice.

Problems in Stochastic Functions

If a simulation uses random numbers, then evaluating an objective or constraint
function twice can return different results. This affects both function estimation and
finite difference estimation. The value of a finite difference might be dominated by the
variation due to randomness, rather than the variation due to different evaluation points
x and x + δ.

Suggestions for Stochastic Functions

If your simulation uses random numbers from a stream you control, reset the random
stream before each evaluation of your objective or constraint functions. This practice can
reduce the variability in results. For example, in an objective function:

function f = mysimulation(x)

rng default % or any other resetting method

...

end

For details, see “Generate Random Numbers That Are Repeatable”.

Common Calculation of Objective and Constraints

Frequently, a simulation evaluates both the objective function and constraints during
the same simulation run. Or, both objective and nonlinear constraint functions use the
same expensive computation. Solvers such as fmincon separately evaluate the objective
function and nonlinear constraint functions. This can lead to a great loss of efficiency,
because the solver calls the expensive computation twice. To circumvent this problem,
use the technique in “Objective and Nonlinear Constraints in the Same Function” on
page 2-45.

Failure in Objective or Constraint Function Evaluation

Your simulation or ODE can fail for some parameter values.

Suggestions for Evaluation Failures

Set Appropriate Bounds

While you might not know all limitations on the parameter space, try to set appropriate
bounds on all parameters, both upper and lower. This can speed up your optimization,
and can help the solver avoid problematic parameter values.

4 Steps to Take After Running a Solver

4-36

Use a Solver That Respects Bounds

As described in “Iterations Can Violate Constraints” on page 2-32, some algorithms can
violate bound constraints at intermediate iterations. For optimizing simulations and
ODEs, use algorithms that always obey bound constraints. See “Algorithms That Satisfy
Bound Constraints” on page 2-32.
Return NaN

If your simulation or ODE solver does not successfully evaluate an objective or nonlinear
constraint function at a point x, have your function return NaN. Most Optimization
Toolbox and Global Optimization Toolbox solvers have the robustness to attempt a
different iterative step if they encounter a NaN value. These robust solvers include:

• fmincon interior-point, sqp, and trust-region-reflective algorithms
• fminunc

• lsqcurvefit

• lsqnonlin

• patternsearch

Some people are tempted to return an arbitrary large objective function value at an
unsuccessful, infeasible, or other poor point. However, this practice can confuse a solver,
because the solver does not realize that the returned value is arbitrary. When you return
NaN, the solver can attempt to evaluate at a different point.

Bibliography

[1] Heidelberger, P., X.-R. Cao, M. A. Zazanis, and R. Suri. Convergence properties of
infinitesimal perturbation analysis estimates. Management Science 34, No. 11,
pp. 1281–1302, 1988.

[2] Leis, J. R., and Kramer, M.A. The Simultaneous Solution and Sensitivity Analysis
of Systems Described by Ordinary Differential Equations. ACM Trans.
Mathematical Software, Vol. 14, No. 1, pp. 45–60, 1988.

[3] Raue, A., et al. Lessons Learned from Quantitative Dynamical Modeling in
Systems Biology. Available at http://www.plosone.org/article/info:doi/10.1371/
journal.pone.0074335, 2013.

[4] Reiman, M. I., and A. Weiss. Sensitivity analysis via likelihood ratios. Proc. 18th
Winter Simulation Conference, ACM, New York, pp. 285–289, 1986.

http://www.jstor.org/stable/2631993
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0074335
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0074335
http://doi.acm.org/10.1145/318242.318450
http://doi.acm.org/10.1145/318242.318450

5

Optimization App

5 Optimization App

5-2

Optimization App

Note: The Optimization app warns that it will be removed in a future release.

In this section...

“Optimization App Basics” on page 5-2
“Specifying Certain Options” on page 5-8
“Importing and Exporting Your Work” on page 5-11

Optimization App Basics

• “How to Open the Optimization App” on page 5-2
• “Examples that Use the Optimization App” on page 5-4
• “Steps for Using the Optimization App” on page 5-4
• “Pausing and Stopping” on page 5-5
• “Viewing Results” on page 5-6
• “Final Point” on page 5-7
• “Starting a New Problem” on page 5-7

How to Open the Optimization App

To open the Optimization app, type

optimtool

in the Command Window. This opens the Optimization app, as shown in the following
figure.

 Optimization App

5-3

You can also start the Optimization app from the MATLAB Apps tab.

5 Optimization App

5-4

The reference page for the Optimization app provides variations for starting the
optimtool function.

Examples that Use the Optimization App

The following documentation examples use the optimization app:

• “Solve a Constrained Nonlinear Problem” on page 1-3
• “Optimization App with the fmincon Solver” on page 6-63
• “Optimization App with the lsqlin Solver” on page 10-23
• “Plot Functions” on page 3-29
• “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-50

Steps for Using the Optimization App

This is a summary of the steps to set up your optimization problem and view results with
the Optimization app.

 Optimization App

5-5

1. Select solver

and algorithm

2. Specify

function

to minimize

3. Set problem

parameters for

selected solver

4. Specify options

5. Run solver

6. View

solver status

and results

7. Import and export

problem, options, and results

Pausing and Stopping

While a solver is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the algorithm using
the current iteration at the time you paused, click Resume.

• Click Stop to stop the algorithm. The Run solver and view results window
displays information for the current iteration at the moment you clicked Stop.

5 Optimization App

5-6

You can export your results after stopping the algorithm. For details, see “Exporting
Your Work” on page 5-11.

Viewing Results

When a solver terminates, the Run solver and view results window displays the
reason the algorithm terminated. To clear the Run solver and view results window
between runs, click Clear Results.

Sorting the Displayed Results

Depending on the solver and problem, results can be in the form of a table. If the table
has multiple rows, sort the table by clicking a column heading. Click the heading again to
sort the results in reverse.

For example, suppose you use the Optimization app to solve the lsqlin problem
described in “Optimization App with the lsqlin Solver” on page 10-23. The result
appears as follows.

To sort the results by value, from lowest to highest, click Value. The results were already
in that order, so don’t change.

 Optimization App

5-7

To sort the results in reverse order, highest to lowest, click Value again.

To return to the original order, click Index.

For an example of sorting a table returned by the Global Optimization Toolbox
gamultiobj function, see “Multiobjective Optimization with Two Objectives”.

If you export results using File > Export to Workspace, the exported results do not
depend on the sorted display.

Final Point

The Final point updates to show the coordinates of the final point when the algorithm
terminated. If you don't see the final point, click the upward-pointing triangle on the

 icon on the lower-left.

Starting a New Problem

Resetting Options and Clearing the Problem

Selecting File > Reset Optimization Tool resets the problem definition and options to
the original default values. This action is equivalent to closing and restarting the app.

To clear only the problem definition, select File > Clear Problem Fields. With this
action, fields in the Problem Setup and Results pane are reset to the defaults, with
the exception of the selected solver and algorithm choice. Any options that you have
modified from the default values in the Options pane are not reset with this action.

Setting Preferences for Changing Solvers

To modify how your options are handled in the Optimization app when you change
solvers, select File > Preferences, which opens the Preferences dialog box shown below.

5 Optimization App

5-8

The default value, Reset options to defaults, discards any options you specified
previously in the optimtool. Under this choice, you can select the option Prompt
before resetting options to defaults.

Alternatively, you can select Keep current options if possible to preserve the values
you have modified. Changed options that are not valid with the newly selected solver are
kept but not used, while active options relevant to the new solver selected are used. This
choice allows you to try different solvers with your problem without losing your options.

Specifying Certain Options

• “Plot Functions” on page 5-8
• “Output function” on page 5-9
• “Display to Command Window” on page 5-10

Plot Functions

You can select a plot function to easily plot various measures of progress while the
algorithm executes. Each plot selected draws a separate axis in the figure window. If
available for the solver selected, the Stop button in the Run solver and view results
window to interrupt a running solver. You can select a predefined plot function from the
Optimization app, or you can select Custom function to write your own. Plot functions
not relevant to the solver selected are grayed out. The following lists the available plot
functions:

• Current point — Select to show a bar plot of the point at the current iteration.

 Optimization App

5-9

• Function count — Select to plot the number of function evaluations at each
iteration.

• Function value — Select to plot the function value at each iteration.
• Norm of residuals — Select to show a bar plot of the current norm of residuals at

the current iteration.
• Max constraint — Select to plot the maximum constraint violation value at each

iteration.
• Current step — Select to plot the algorithm step size at each iteration.
• First order optimality — Select to plot the violation of the optimality conditions for

the solver at each iteration.
• Custom function — Enter your own plot function as a function handle. To provide

more than one plot function use a cell array, for example, by typing:

{@plotfcn,@plotfcn2}

Write custom plot functions with the same syntax as output functions. For
information, see “Output Function” on page 13-20.

The graphic above shows the plot functions available for the default fmincon solver.

Output function

Output function is a function or collection of functions the algorithm calls at each
iteration. Through an output function you can observe optimization quantities such as
function values, gradient values, and current iteration. Specify no output function, a
single output function using a function handle, or multiple output functions. To provide
more than one output function use a cell array of function handles in the Custom
function field, for example by typing:

{@outputfcn,@outputfcn2}

5 Optimization App

5-10

For more information on writing an output function, see “Output Function” on page
13-20.

Display to Command Window

Select Level of display to specify the amount of information displayed when you run
the algorithm. Choose from the following; depending on the solver, only some may be
available:

• off (default) — Display no output.
• final — Display the reason for stopping at the end of the run.
• final with detailed message — Display the detailed reason for stopping at the

end of the run.
• notify — Display output only if the function does not converge.
• notify with detailed message — Display a detailed output only if the function

does not converge.
• iterative — Display information at each iteration of the algorithm and the reason

for stopping at the end of the run.
• iterative with detailed message — Display information at each iteration of

the algorithm and the detailed reason for stopping at the end of the run.

See “Enhanced Exit Messages” on page 3-5 for information on detailed messages.

Selecting Show diagnostics lists problem information and options that have changed
from the defaults.

The graphic below shows the display options for the fmincon solver. Some other solvers
have fewer options.

 Optimization App

5-11

Importing and Exporting Your Work

• “Exporting Your Work” on page 5-11
• “Importing Your Work” on page 5-13
• “Generating a File” on page 5-13

Exporting Your Work

The Export to Workspace dialog box enables you to send your problem information to
the MATLAB workspace as a structure or object that you may then manipulate in the
Command Window.

To access the Export to Workspace dialog box shown below, select File > Export to
Workspace.

5 Optimization App

5-12

You can specify results that contain:

• The problem and options information
• The problem and options information, and the state of the solver when stopped (this

means the latest point for most solvers, the current population for Genetic Algorithms
solvers, and the best point found for the Simulated Annealing solver)

• The states of random number generators rand and randn at the start of the previous
run, by checking the Use random states from previous run box for applicable
solvers

• The options information only
• The results of running your problem in the Optimization app

Exported results contain all optional information. For example, an exported results
structure for lsqcurvefit contains the data x, resnorm, residual, exitflag,
output, lambda, and jacobian.

After you have exported information from the Optimization app to the MATLAB
workspace, you can see your data in the MATLAB Workspace browser or by typing
the name of the structure at the Command Window. To see the value of a field in a
structure or object, double-click the name in the Workspace window. Alternatively, see
the values by entering exportname.fieldname at the command line. For example, so
see the message in an output structure, enter output.message. If a structure contains
structures or objects, you can double-click again in the workspace browser, or enter
exportname.name2.fieldname at the command line. For example, to see the level
of iterative display contained in the options of an exported problem structure, enter
optimproblem.options.Display.

You can run a solver on an exported problem at the command line by typing

solver(problem)

For example, if you have exported a fmincon problem named optimproblem, you can
type

fmincon(optimproblem)

This runs fmincon on the problem with the saved options in optimproblem. You can
exercise more control over outputs by typing, for example,

[x,fval,exitflag] = fmincon(optimproblem)

or use any other supported syntax.

 Optimization App

5-13

Importing Your Work

Whether you save options from Optimization Toolbox functions at the Command
Window, or whether you export options, or the problem and options, from the
Optimization app, you can resume work on your problem using the Optimization app.

There are three ways to import your options, or problem and options, to the Optimization
app:

• Call the optimtool function from the Command Window specifying your options, or
problem and options, as the input, for example,

optimtool(options)

• Select File > Import Options in the Optimization app.
• Select File > Import Problem in the Optimization app.

The methods described above require that the options, or problem and options, be present
in the MATLAB workspace.

If you import a problem that was generated with the Include information needed
to resume this run box checked, the initial point is the latest point generated in
the previous run. (For Genetic Algorithm solvers, the initial population is the latest
population generated in the previous run. For the Simulated Annealing solver, the initial
point is the best point generated in the previous run.) If you import a problem that was
generated with this box unchecked, the initial point (or population) is the initial point (or
population) of the previous run.

Generating a File

You may want to generate a file to continue with your optimization problem in the
Command Window at another time. You can run the file without modification to recreate
the results that you created with the Optimization app. You can also edit and modify the
file and run it from the Command Window.

To export data from the Optimization app to a file, select File > Generate Code.

The generated file captures the following:

• The problem definition, including the solver, information on the function to be
minimized, algorithm specification, constraints, and start point

• The options with the currently selected option value

5 Optimization App

5-14

Running the file at the Command Window reproduces your problem results.

Although you cannot export your problem results to a generated file, you can save
them in a MAT-file that you can use with your generated file, by exporting the results
using the Export to Workspace dialog box, then saving the data to a MAT-file from the
Command Window.

6

Nonlinear algorithms and examples

• “Unconstrained Nonlinear Optimization Algorithms” on page 6-2
• “fminunc Unconstrained Minimization” on page 6-13
• “Minimization with Gradient and Hessian” on page 6-15
• “Minimization with Gradient and Hessian Sparsity Pattern” on page 6-17
• “Constrained Nonlinear Optimization Algorithms” on page 6-21
• “Nonlinear Inequality Constraints” on page 6-45
• “Nonlinear Constraints with Gradients” on page 6-47
• “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-50
• “Linear or Quadratic Objective with Quadratic Constraints” on page 6-56
• “Nonlinear Equality and Inequality Constraints” on page 6-61
• “Optimization App with the fmincon Solver” on page 6-63
• “Minimization with Bound Constraints and Banded Preconditioner” on page 6-68
• “Minimization with Linear Equality Constraints” on page 6-73
• “Minimization with Dense Structured Hessian, Linear Equalities” on page 6-75
• “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-80
• “One-Dimensional Semi-Infinite Constraints” on page 6-93
• “Two-Dimensional Semi-Infinite Constraint” on page 6-96

6 Nonlinear algorithms and examples

6-2

Unconstrained Nonlinear Optimization Algorithms

In this section...

“Unconstrained Optimization Definition” on page 6-2
“fminunc trust-region Algorithm” on page 6-2
“fminunc quasi-newton Algorithm” on page 6-5
“fminsearch Algorithm” on page 6-10

Unconstrained Optimization Definition

Unconstrained minimization is the problem of finding a vector x that is a local minimum
to a scalar function f(x):

min ()
x

f x

The term unconstrained means that no restriction is placed on the range of x.

fminunc trust-region Algorithm

Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and
returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,
move to a point with a lower function value. The basic idea is to approximate f with a
simpler function q, which reasonably reflects the behavior of function f in a neighborhood
N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min (), .
s

q s s N Œ{ }

 Unconstrained Nonlinear Optimization Algorithms

6-3

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point
remains unchanged and N, the region of trust, is shrunk and the trial step computation
is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are
how to choose and compute the approximation q (defined at the current point x), how
to choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

min ,
1

2
s Hs s g DsT T+ £

Ï
Ì
Ó

¸
˝
˛

 such that D

where g is the gradient of f at the current point x, H is the Hessian matrix (the
symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a positive
scalar, and ∥ . ∥ is the 2-norm. Good algorithms exist for solving Equation 6-2 (see [48]);
such algorithms typically involve the computation of a full eigensystem and a Newton
process applied to the secular equation

1 1
0

D

- =

s

.

Such algorithms provide an accurate solution to Equation 6-2. However, they require
time proportional to several factorizations of H. Therefore, for large-scale problems a
different approach is needed. Several approximation and heuristic strategies, based on
Equation 6-2, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region
subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 6-2 is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by

6 Nonlinear algorithms and examples

6-4

s1 and s2, where s1 is in the direction of the gradient g, and s2 is either an approximate
Newton direction, i.e., a solution to

H s g◊ = -2 ,

or a direction of negative curvature,

s H s
T

2 2
0◊ ◊ < .

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 6-2 to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is
adjusted according to standard rules. In particular, it is decreased if the trial step is not
accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares.
However, the underlying algorithmic ideas are the same as for the general case. These
special cases are discussed in later sections.

Preconditioned Conjugate Gradient Method

A popular way to solve large symmetric positive definite systems of linear equations
Hp = –g is the method of Preconditioned Conjugate Gradients (PCG). This iterative
approach requires the ability to calculate matrix-vector products of the form H·v where
v is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for
H. That is, M = C2, where C–1HC–1 is a well-conditioned matrix or a matrix with clustered
eigenvalues.

 Unconstrained Nonlinear Optimization Algorithms

6-5

In a minimization context, you can assume that the Hessian matrix H is symmetric.
However, H is guaranteed to be positive definite only in the neighborhood of a strong
minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is
encountered, i.e., dTHd ≤ 0. The PCG output direction, p, is either a direction of negative
curvature or an approximate (tol controls how approximate) solution to the Newton
system Hp = –g. In either case p is used to help define the two-dimensional subspace
used in the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2.

fminunc quasi-newton Algorithm

Basics of Unconstrained Optimization

Although a wide spectrum of methods exists for unconstrained optimization, methods
can be broadly categorized in terms of the derivative information that is, or is not, used.
Search methods that use only function evaluations (e.g., the simplex search of Nelder
and Mead [30]) are most suitable for problems that are not smooth or have a number
of discontinuities. Gradient methods are generally more efficient when the function
to be minimized is continuous in its first derivative. Higher order methods, such as
Newton's method, are only really suitable when the second-order information is readily
and easily calculated, because calculation of second-order information, using numerical
differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a direction
of search where the minimum is thought to lie. The simplest of these is the method of
steepest descent in which a search is performed in a direction, –∇f(x), where ∇f(x) is the
gradient of the objective function. This method is very inefficient when the function to be
minimized has long narrow valleys as, for example, is the case for Rosenbrock's function

f x x x x() () .= -() + -100 12 1
2

2

1
2

The minimum of this function is at x = [1,1], where f(x) = 0. A contour map of this
function is shown in the figure below, along with the solution path to the minimum for
a steepest descent implementation starting at the point [-1.9,2]. The optimization was
terminated after 1000 iterations, still a considerable distance from the minimum. The
black areas are where the method is continually zigzagging from one side of the valley to
another. Note that toward the center of the plot, a number of larger steps are taken when
a point lands exactly at the center of the valley.

6 Nonlinear algorithms and examples

6-6

Figure 6-1. Steepest Descent Method on Rosenbrock's Function

This function, also known as the banana function, is notorious in unconstrained
examples because of the way the curvature bends around the origin. Rosenbrock's
function is used throughout this section to illustrate the use of a variety of optimization
techniques. The contours have been plotted in exponential increments because of the
steepness of the slope surrounding the U-shaped valley.

For an animated version of this figure, enter bandem at the MATLAB command line.

Quasi-Newton Methods

Of the methods that use gradient information, the most favored are the quasi-Newton
methods. These methods build up curvature information at each iteration to formulate a
quadratic model problem of the form

min ,
x

T T
x Hx c x b

1

2
+ +

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant
vector, and b is a constant. The optimal solution for this problem occurs when the partial
derivatives of x go to zero, i.e.,

 Unconstrained Nonlinear Optimization Algorithms

6-7

—f x Hx c() .
* *

= + = 0

The optimal solution point, x*, can be written as

x H c
*

.= -
-1

Newton-type methods (as opposed to quasi-Newton methods) calculate H directly and
proceed in a direction of descent to locate the minimum after a number of iterations.
Calculating H numerically involves a large amount of computation. Quasi-Newton
methods avoid this by using the observed behavior of f(x) and ∇f(x) to build up curvature
information to make an approximation to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However, the formula
of Broyden [3], Fletcher [12], Goldfarb [20], and Shanno [37] (BFGS) is thought to be the
most effective for use in a general purpose method.

The formula given by BFGS is

H H
q q

q s

H s s H

s H s
k k

k k
T

k
T

k

k k k
T

k
T

k
T

k k

+
= + -1 ,

where

s x x

q f x f x

k k k

k k k

= -

= () - ()
+

+

1

1

,

.— —

As a starting point, H0 can be set to any symmetric positive definite matrix, for example,
the identity matrix I. To avoid the inversion of the Hessian H, you can derive an
updating method that avoids the direct inversion of H by using a formula that makes an
approximation of the inverse Hessian H–1 at each update. A well-known procedure is the
DFP formula of Davidon [7], Fletcher, and Powell [14]. This uses the same formula as the
BFGS method (Equation 6-9) except that qk is substituted for sk.

The gradient information is either supplied through analytically calculated gradients,
or derived by partial derivatives using a numerical differentiation method via finite

6 Nonlinear algorithms and examples

6-8

differences. This involves perturbing each of the design variables, x, in turn and
calculating the rate of change in the objective function.

At each major iteration, k, a line search is performed in the direction

d H f xk k= - ◊ ()-1 — .

The quasi-Newton method is illustrated by the solution path on Rosenbrock's function
in Figure 6-2, BFGS Method on Rosenbrock's Function. The method is able to follow the
shape of the valley and converges to the minimum after 140 function evaluations using
only finite difference gradients.

Figure 6-2. BFGS Method on Rosenbrock's Function

For an animated version of this figure, enter bandem at the MATLAB command line.

Line Search

Line search is a search method that is used as part of a larger optimization algorithm.
At each step of the main algorithm, the line-search method searches along the line
containing the current point, xk, parallel to the search direction, which is a vector
determined by the main algorithm. That is, the method finds the next iterate xk+1 of the
form

 Unconstrained Nonlinear Optimization Algorithms

6-9

x x dk k k+
= +1 a

* ,

where xk denotes the current iterate, dk is the search direction, and α* is a scalar step
length parameter.

The line search method attempts to decrease the objective function along the line xk +
α*dk by repeatedly minimizing polynomial interpolation models of the objective function.
The line search procedure has two main steps:

• The bracketing phase determines the range of points on the line x x dk k k+
= +

1
a

* to
be searched. The bracket corresponds to an interval specifying the range of values of
α.

• The sectioning step divides the bracket into subintervals, on which the minimum of
the objective function is approximated by polynomial interpolation.

The resulting step length α satisfies the Wolfe conditions:

f x d f x c f dk k k k
T

k+() £ () +a a1 — ,

— —f x d d c f dk k
T

k k
T

k+() ≥a 2 ,

where c1 and c2 are constants with 0 < c1 < c2 < 1.

The first condition (Equation 6-12) requires that αk sufficiently decreases the objective
function. The second condition (Equation 6-13) ensures that the step length is not too
small. Points that satisfy both conditions (Equation 6-12 and Equation 6-13) are called
acceptable points.

The line search method is an implementation of the algorithm described in Section 2-6 of
[13]. See also [31] for more information about line search.

Hessian Update

Many of the optimization functions determine the direction of search by updating
the Hessian matrix at each iteration, using the BFGS method (Equation 6-9). The

6 Nonlinear algorithms and examples

6-10

function fminunc also provides an option to use the DFP method given in “Quasi-
Newton Methods” on page 6-6 (set HessUpdate to 'dfp' in options to select
the DFP method). The Hessian, H, is always maintained to be positive definite so that
the direction of search, d, is always in a descent direction. This means that for some
arbitrarily small step α in the direction d, the objective function decreases in magnitude.
You achieve positive definiteness of H by ensuring that H is initialized to be positive
definite and thereafter q sk

T
k (from Equation 6-14) is always positive. The term q sk

T
k is

a product of the line search step length parameter αk and a combination of the search
direction d with past and present gradient evaluations,

q s f x d f x dk
T

k k k
T

k
T

= () - ()()+a — —1 .

You always achieve the condition that q sk
T

k is positive by performing a sufficiently
accurate line search. This is because the search direction, d, is a descent direction,
so that αk and the negative gradient –∇f(xk)Td are always positive. Thus, the possible
negative term –∇f(xk+1)Td can be made as small in magnitude as required by increasing
the accuracy of the line search.

fminsearch Algorithm

fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias et
al. [57]. This algorithm uses a simplex of n + 1 points for n-dimensional vectors x.
The algorithm first makes a simplex around the initial guess x0 by adding 5% of each
component x0(i) to x0, and using these n vectors as elements of the simplex in addition to
x0. (It uses 0.00025 as component i if x0(i) = 0.) Then, the algorithm modifies the simplex
repeatedly according to the following procedure.

Note: The keywords for the fminsearch iterative display appear in bold after the
description of the step.

1 Let x(i) denote the list of points in the current simplex, i = 1,...,n+1.
2 Order the points in the simplex from lowest function value f(x(1)) to highest f(x(n+1)).

At each step in the iteration, the algorithm discards the current worst point x(n+1),

 Unconstrained Nonlinear Optimization Algorithms

6-11

and accepts another point into the simplex. [Or, in the case of step 7 below, it
changes all n points with values above f(x(1))].

3 Generate the reflected point
r = 2m – x(n+1),

where
m = Σx(i)/n, i = 1...n,

and calculate f(r).
4 If f(x(1)) ≤ f(r) < f(x(n)), accept r and terminate this iteration. Reflect
5 If f(r) < f(x(1)), calculate the expansion point s

s = m + 2(m – x(n+1)),

and calculate f(s).

a If f(s) < f(r), accept s and terminate the iteration. Expand
b Otherwise, accept r and terminate the iteration. Reflect

6 If f(r) ≥ f(x(n)), perform a contraction between m and the better of x(n+1) and r:

a If f(r) < f(x(n+1)) (i.e., r is better than x(n+1)), calculate
c = m + (r – m)/2

and calculate f(c). If f(c) < f(r), accept c and terminate the iteration. Contract
outside Otherwise, continue with Step 7 (Shrink).

b If f(r) ≥ f(x(n+1)), calculate
cc = m + (x(n+1) – m)/2

and calculate f(cc). If f(cc) < f(x(n+1)), accept cc and terminate the iteration.
Contract inside Otherwise, continue with Step 7 (Shrink).

7 Calculate the n points
v(i) = x(1) + (x(i) – x(1))/2

and calculate f(v(i)), i = 2,...,n+1. The simplex at the next iteration is x(1),
v(2),...,v(n+1). Shrink

The following figure shows the points that fminsearch might calculate in the procedure,
along with each possible new simplex. The original simplex has a bold outline. The
iterations proceed until they meet a stopping criterion.

6 Nonlinear algorithms and examples

6-12

m

x(n+1)

r

x(1)

v(n+1)

s

c

cc

 fminunc Unconstrained Minimization

6-13

fminunc Unconstrained Minimization

Consider the problem of finding a set of values [x1, x2] that solves

min () .
x

xf x e x x x x x= + + + +()1 4 2 4 2 11
2

2
2

1 2 2

To solve this two-dimensional problem, write a file that returns the function value. Then,
invoke the unconstrained minimization routine fminunc.

Step 1: Write a file objfun.m.

This code ships with the toolbox. To view, enter type objfun:

function f = objfun(x)

f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Set options.

Set options to use the 'quasi-newton' algorithm. Set options because the 'trust-
region' algorithm requires that the objective function include a gradient. If you do not
set the options, then, depending on your MATLAB version, fminunc can issue a warning.

options = optimoptions(@fminunc,'Algorithm','quasi-newton');

Step 3: Invoke fminunc using the options.

x0 = [-1,1]; % Starting guess

[x,fval,exitflag,output] = fminunc(@objfun,x0,options);

This produces the following output:

Local minimum found.

Optimization completed because the size of the gradient is less

than the default value of the function tolerance.

View the results:

x,fval,exitflag,output

6 Nonlinear algorithms and examples

6-14

x =

 0.5000 -1.0000

fval =

 3.6609e-15

exitflag =

 1

output =

 iterations: 8

 funcCount: 66

 stepsize: 6.3361e-07

 lssteplength: 1

firstorderopt: 1.2284e-07

 algorithm: 'quasi-newton'

 message: 'Local minimum found.…'

The exitflag tells whether the algorithm converged. exitflag = 1 means a local
minimum was found. The meanings of exitflags are given in function reference pages.

The output structure gives more details about the optimization. For fminunc, it
includes the number of iterations in iterations, the number of function evaluations
in funcCount, the final step-size in stepsize, a measure of first-order optimality
(which in this unconstrained case is the infinity norm of the gradient at the solution) in
firstorderopt, the type of algorithm used in algorithm, and the exit message (the
reason the algorithm stopped).

Related Examples
• “Minimization with Gradient and Hessian” on page 6-15

More About
• “Set Options”
• “Solver Outputs and Iterative Display”

 Minimization with Gradient and Hessian

6-15

Minimization with Gradient and Hessian

This example shows how to solve a nonlinear minimization problem with an explicit
tridiagonal Hessian matrix H(x).

The problem is to find x to minimize

f x x xi

x

i

x

i

n
i i

() ,= () + ()Ê

Ë
ÁÁ

ˆ

¯
˜̃

+ +()
+

+()
=

-

Â 2
1

1
2

1

1

1
1

2 2

where n = 1000.

Step 1: Write a file brownfgh.m that computes the objective function, the
gradient of the objective, and the sparse tridiagonal Hessian matrix.

The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective
function, you need to use optimoptions to indicate that this information is available in
brownfgh, using the GradObj and Hessian options.

Step 2: Call a nonlinear minimization routine with a starting point xstart.

n = 1000;

xstart = -ones(n,1);

xstart(2:2:n,1) = 1;

options = optimoptions(@fminunc,'Algorithm','trust-region',...

 'GradObj','on','Hessian','on');

[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);

This 1000 variable problem is solved in about 7 iterations and 7 conjugate gradient
iterations with a positive exitflag indicating convergence. The final function value
and measure of optimality at the solution x are both close to zero. For fminunc, the first
order optimality is the infinity norm of the gradient of the function, which is zero at a
local minimum:

fval,exitflag,output

6 Nonlinear algorithms and examples

6-16

fval =

 2.8709e-17

exitflag =

 1

output =

 iterations: 7

 funcCount: 8

 stepsize: 0.0039

 cgiterations: 7

 firstorderopt: 4.7948e-10

 algorithm: 'trust-region'

 message: 'Local minimum found.…'

 constrviolation: []

Related Examples
• “Minimization with Gradient and Hessian Sparsity Pattern” on page 6-17

 Minimization with Gradient and Hessian Sparsity Pattern

6-17

Minimization with Gradient and Hessian Sparsity Pattern

This example shows how to solve a nonlinear minimization problem with tridiagonal
Hessian matrix approximated by sparse finite differences instead of explicit computation.

The problem is to find x to minimize

f x x xi

x

i

x

i

n
i i

() ,= () + ()Ê

Ë
ÁÁ

ˆ

¯
˜̃

+ +()
+

+()
=

-

Â 2
1

1
2

1

1

1
1

2 2

where n = 1000.

To use the trust-region method in fminunc, you must compute the gradient in fun; it
is not optional as in the quasi-newton method.

The brownfg file computes the objective function and gradient.

Step 1: Write a file brownfg.m that computes the objective function and
the gradient of the objective.

This function file ships with your software.

function [f,g] = brownfg(x)

% BROWNFG Nonlinear minimization test problem

%

% Evaluate the function

n=length(x); y=zeros(n,1);

i=1:(n-1);

y(i)=(x(i).^2).^(x(i+1).^2+1) + ...

 (x(i+1).^2).^(x(i).^2+1);

 f=sum(y);

% Evaluate the gradient if nargout > 1

 if nargout > 1

 i=1:(n-1); g = zeros(n,1);

 g(i) = 2*(x(i+1).^2+1).*x(i).* ...

 ((x(i).^2).^(x(i+1).^2))+ ...

 2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...

 log(x(i+1).^2);

 g(i+1) = g(i+1) + ...

6 Nonlinear algorithms and examples

6-18

 2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...

 log(x(i).^2) + ...

 2*(x(i).^2+1).*x(i+1).* ...

 ((x(i+1).^2).^(x(i).^2));

 end

To allow efficient computation of the sparse finite-difference approximation of the
Hessian matrix H(x), the sparsity structure of H must be predetermined. In this case
assume this structure, Hstr, a sparse matrix, is available in file brownhstr.mat. Using
the spy command you can see that Hstr is indeed sparse (only 2998 nonzeros). Use
optimoptions to set the HessPattern option to Hstr. When a problem as large as
this has obvious sparsity structure, not setting the HessPattern option requires a huge
amount of unnecessary memory and computation because fminunc attempts to use finite
differencing on a full Hessian matrix of one million nonzero entries.

You must also set the GradObj option to 'on' using optimoptions, since the gradient
is computed in brownfg.m. Then execute fminunc as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting point xstart.

fun = @brownfg;

load brownhstr % Get Hstr, structure of the Hessian

spy(Hstr) % View the sparsity structure of Hstr

 Minimization with Gradient and Hessian Sparsity Pattern

6-19

n = 1000;

xstart = -ones(n,1);

xstart(2:2:n,1) = 1;

options = optimoptions(@fminunc,'Algorithm','trust-region',...

 'GradObj','on','HessPattern',Hstr);

[x,fval,exitflag,output] = fminunc(fun,xstart,options);

This 1000-variable problem is solved in seven iterations and seven conjugate gradient
iterations with a positive exitflag indicating convergence. The final function value and
measure of optimality at the solution x are both close to zero (for fminunc, the first-order
optimality is the infinity norm of the gradient of the function, which is zero at a local
minimum):

exitflag,fval,output

6 Nonlinear algorithms and examples

6-20

exitflag =

 1

fval =

 7.4738e-17

output =

 iterations: 7

 funcCount: 8

 stepsize: 0.0046

 cgiterations: 7

 firstorderopt: 7.9822e-10

 algorithm: 'trust-region'

 message: 'Local minimum found.…'

 constrviolation: []

Related Examples
• “Minimization with Gradient and Hessian” on page 6-15

 Constrained Nonlinear Optimization Algorithms

6-21

Constrained Nonlinear Optimization Algorithms

In this section...

“Constrained Optimization Definition” on page 6-21
“fmincon Trust Region Reflective Algorithm” on page 6-21
“fmincon Active Set Algorithm” on page 6-26
“fmincon SQP Algorithm” on page 6-36
“fmincon Interior Point Algorithm” on page 6-37
“fminbnd Algorithm” on page 6-41
“fseminf Problem Formulation and Algorithm” on page 6-41

Constrained Optimization Definition

Constrained minimization is the problem of finding a vector x that is a local minimum to
a scalar function f(x) subject to constraints on the allowable x:

min ()
x

f x

such that one or more of the following holds: c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq,
l ≤ x ≤ u. There are even more constraints used in semi-infinite programming; see
“fseminf Problem Formulation and Algorithm” on page 6-41.

fmincon Trust Region Reflective Algorithm

Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and
returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,
move to a point with a lower function value. The basic idea is to approximate f with a
simpler function q, which reasonably reflects the behavior of function f in a neighborhood

6 Nonlinear algorithms and examples

6-22

N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min (), .
s

q s s N Œ{ }

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point
remains unchanged and N, the region of trust, is shrunk and the trial step computation
is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are
how to choose and compute the approximation q (defined at the current point x), how
to choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

min ,
1

2
s Hs s g DsT T+ £

Ï
Ì
Ó

¸
˝
˛

 such that D

where g is the gradient of f at the current point x, H is the Hessian matrix (the
symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a positive
scalar, and ∥ . ∥ is the 2-norm. Good algorithms exist for solving Equation 6-18 (see [48]);
such algorithms typically involve the computation of a full eigensystem and a Newton
process applied to the secular equation

1 1
0

D

- =

s

.

Such algorithms provide an accurate solution to Equation 6-18. However, they require
time proportional to several factorizations of H. Therefore, for large-scale problems a
different approach is needed. Several approximation and heuristic strategies, based on
Equation 6-18, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region
subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S

 Constrained Nonlinear Optimization Algorithms

6-23

has been computed, the work to solve Equation 6-18 is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by
s1 and s2, where s1 is in the direction of the gradient g, and s2 is either an approximate
Newton direction, i.e., a solution to

H s g◊ = -2 ,

or a direction of negative curvature,

s H s
T

2 2
0◊ ◊ < .

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 6-18 to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is
adjusted according to standard rules. In particular, it is decreased if the trial step is not
accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares.
However, the underlying algorithmic ideas are the same as for the general case. These
special cases are discussed in later sections.

Preconditioned Conjugate Gradient Method

A popular way to solve large symmetric positive definite systems of linear equations
Hp = –g is the method of Preconditioned Conjugate Gradients (PCG). This iterative

6 Nonlinear algorithms and examples

6-24

approach requires the ability to calculate matrix-vector products of the form H·v where
v is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for
H. That is, M = C2, where C–1HC–1 is a well-conditioned matrix or a matrix with clustered
eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric.
However, H is guaranteed to be positive definite only in the neighborhood of a strong
minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is
encountered, i.e., dTHd ≤ 0. The PCG output direction, p, is either a direction of negative
curvature or an approximate (tol controls how approximate) solution to the Newton
system Hp = –g. In either case p is used to help define the two-dimensional subspace
used in the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2.

Linear Equality Constraints

Linear constraints complicate the situation described for unconstrained minimization.
However, the underlying ideas described previously can be carried through in a clean and
efficient way. The trust-region methods in Optimization Toolbox solvers generate strictly
feasible iterates.

The general linear equality constrained minimization problem can be written

min () ,f x Ax b such that ={ }

where A is an m-by-n matrix (m ≤ n). Some Optimization Toolbox solvers preprocess A to
remove strict linear dependencies using a technique based on the LU factorization of AT

[46]. Here A is assumed to be of rank m.

The method used to solve Equation 6-21 differs from the unconstrained approach in
two significant ways. First, an initial feasible point x0 is computed, using a sparse
least-squares step, so that Ax0 = b. Second, Algorithm PCG is replaced with Reduced
Preconditioned Conjugate Gradients (RPCG), see [46], in order to compute an
approximate reduced Newton step (or a direction of negative curvature in the null space
of A). The key linear algebra step involves solving systems of the form

C A

A

s

t

rT%

% 0 0

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙,

 Constrained Nonlinear Optimization Algorithms

6-25

where %A approximates A (small nonzeros of A are set to zero provided rank is not lost)
and C is a sparse symmetric positive-definite approximation to H, i.e., C = H. See [46] for
more details.

Box Constraints

The box constrained problem is of the form

min () ,f x l x u such that £ £{ }

where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of
the components of l can be equal to –∞ and some (or all) of the components of u can be
equal to ∞. The method generates a sequence of strictly feasible points. Two techniques
are used to maintain feasibility while achieving robust convergence behavior. First, a
scaled modified Newton step replaces the unconstrained Newton step (to define the two-
dimensional subspace S). Second, reflections are used to increase the step size.

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary
conditions for Equation 6-23,

D x g() ,() =
-2

0

where

D x vk() ,
/

= ()-
diag

1 2

and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li

• If gi < 0 and ui = ∞ then vi = –1
• If gi ≥ 0 and li = –∞ then vi = 1

The nonlinear system Equation 6-24 is not differentiable everywhere.
Nondifferentiability occurs when vi = 0. You can avoid such points by maintaining strict
feasibility, i.e., restricting l < x < u.

6 Nonlinear algorithms and examples

6-26

The scaled modified Newton step sk for the nonlinear system of equations given by
Equation 6-24 is defined as the solution to the linear system

ˆ ˆMDs gN
= -

at the kth iteration, where

ˆ ,
/

g D g v g= = ()-1 1 2
diag

and

ˆ () .M D HD g Jv
= +

- -1 1 diag

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the diagonal
matrix Jv equals 0, –1, or 1. If all the components of l and u are finite, Jv = diag(sign(g)).
At a point where gi = 0, vi might not be differentiable. J

ii

v
= 0 is defined at such a point.

Nondifferentiability of this type is not a cause for concern because, for such a component,
it is not significant which value vi takes. Further, |vi| will still be discontinuous at this
point, but the function |vi|·gi is continuous.

Second, reflections are used to increase the step size. A (single) reflection step is defined
as follows. Given a step p that intersects a bound constraint, consider the first bound
constraint crossed by p; assume it is the ith bound constraint (either the ith upper or
ith lower bound). Then the reflection step pR = p except in the ith component, where
pR

i = –pi.

fmincon Active Set Algorithm

Introduction

In constrained optimization, the general aim is to transform the problem into an easier
subproblem that can then be solved and used as the basis of an iterative process. A
characteristic of a large class of early methods is the translation of the constrained
problem to a basic unconstrained problem by using a penalty function for constraints

 Constrained Nonlinear Optimization Algorithms

6-27

that are near or beyond the constraint boundary. In this way the constrained problem
is solved using a sequence of parameterized unconstrained optimizations, which in
the limit (of the sequence) converge to the constrained problem. These methods are
now considered relatively inefficient and have been replaced by methods that have
focused on the solution of the Karush-Kuhn-Tucker (KKT) equations. The KKT equations
are necessary conditions for optimality for a constrained optimization problem. If the
problem is a so-called convex programming problem, that is, f(x) and Gi(x), i = 1,...,m, are
convex functions, then the KKT equations are both necessary and sufficient for a global
solution point.

Referring to GP (Equation 2-1), the Kuhn-Tucker equations can be stated as

— —f x G x

G x i m

i m

i i
i

m

i i e

i

* *

* , , ...,

,

() + ◊ () =

◊ () = =

≥ =

=
Âl

l

l

1

0

0 1

0

 ee m+ 1,..., ,

in addition to the original constraints in Equation 2-1.

The first equation describes a canceling of the gradients between the objective function
and the active constraints at the solution point. For the gradients to be canceled,
Lagrange multipliers (λi, i = 1,...,m) are necessary to balance the deviations in magnitude
of the objective function and constraint gradients. Because only active constraints
are included in this canceling operation, constraints that are not active must not be
included in this operation and so are given Lagrange multipliers equal to 0. This is stated
implicitly in the last two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear programming
algorithms. These algorithms attempt to compute the Lagrange multipliers directly.
Constrained quasi-Newton methods guarantee superlinear convergence by accumulating
second-order information regarding the KKT equations using a quasi-Newton
updating procedure. These methods are commonly referred to as Sequential Quadratic
Programming (SQP) methods, since a QP subproblem is solved at each major iteration
(also known as Iterative Quadratic Programming, Recursive Quadratic Programming,
and Constrained Variable Metric methods).

The 'active-set' algorithm is not a large-scale algorithm; see “Large-Scale vs.
Medium-Scale Algorithms” on page 2-12.

6 Nonlinear algorithms and examples

6-28

Sequential Quadratic Programming (SQP)

SQP methods represent the state of the art in nonlinear programming methods.
Schittkowski [36], for example, has implemented and tested a version that outperforms
every other tested method in terms of efficiency, accuracy, and percentage of successful
solutions, over a large number of test problems.

Based on the work of Biggs [1], Han [22], and Powell ([32] and [33]), the method allows
you to closely mimic Newton's method for constrained optimization just as is done for
unconstrained optimization. At each major iteration, an approximation is made of the
Hessian of the Lagrangian function using a quasi-Newton updating method. This is then
used to generate a QP subproblem whose solution is used to form a search direction for
a line search procedure. An overview of SQP is found in Fletcher [13], Gill et al. [19],
Powell [35], and Schittkowski [23]. The general method, however, is stated here.

Given the problem description in GP (Equation 2-1) the principal idea is the formulation
of a QP subproblem based on a quadratic approximation of the Lagrangian function.

L x f x g xi i
i

m

(,) () ().l l= + ◊

=

Â
1

Here you simplify Equation 2-1 by assuming that bound constraints have been expressed
as inequality constraints. You obtain the QP subproblem by linearizing the nonlinear
constraints.

Quadratic Programming (QP) Subproblem

min

, ,...,

d

T
k k

T

i k
T

i k e

i

n
d H d f x d

g x d g x i m

g x

Œ¬
+ ()

() + () = =

1

2

0 1

—

—

—

kk
T

i k ed g x i m m() + () £ = +0 1, ,..., .

This subproblem can be solved using any QP algorithm (see, for instance, “Quadratic
Programming Solution” on page 6-31). The solution is used to form a new iterate
xk + 1 = xk + αkdk.

The step length parameter αk is determined by an appropriate line search procedure
so that a sufficient decrease in a merit function is obtained (see “Updating the Hessian

 Constrained Nonlinear Optimization Algorithms

6-29

Matrix” on page 6-30). The matrix Hk is a positive definite approximation of the
Hessian matrix of the Lagrangian function (Equation 6-29). Hk can be updated by any
of the quasi-Newton methods, although the BFGS method (see “Updating the Hessian
Matrix” on page 6-30) appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations than an
unconstrained problem using SQP. One of the reasons for this is that, because of limits
on the feasible area, the optimizer can make informed decisions regarding directions of
search and step length.

Consider Rosenbrock's function with an additional nonlinear inequality constraint, g(x),

x x
1

2

2

2
1 5 0+ - £. .

This was solved by an SQP implementation in 96 iterations compared to 140 for the
unconstrained case. SQP Method on Nonlinearly Constrained Rosenbrock's Function
shows the path to the solution point x = [0.9072,0.8228] starting at x = [–1.9,2.0].

Figure 6-3. SQP Method on Nonlinearly Constrained Rosenbrock's Function

SQP Implementation

The SQP implementation consists of three main stages, which are discussed briefly in the
following subsections:

6 Nonlinear algorithms and examples

6-30

• “Updating the Hessian Matrix” on page 6-30
• “Quadratic Programming Solution” on page 6-31
• “Line Search and Merit Function” on page 6-35

Updating the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the Hessian of
the Lagrangian function, H, is calculated using the BFGS method, where λi, i = 1,...,m, is
an estimate of the Lagrange multipliers.

H H
q q

q s

H s s H

s H s
k k

k k
T

k
T

k

k k k
T

k
T

k
T

k k

+
= + -1 ,

where

s x x

q f x g x f x

k k k

k k i i k

i

m

k i

= -

= () + ◊ ()
Ê

Ë
ÁÁ

ˆ

¯
˜̃ - () + ◊

+

+ +
=
Â

1

1 1

1

— — —l l ——g xi k

i

m

()
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â

1

.

Powell [33] recommends keeping the Hessian positive definite even though it might
be positive indefinite at the solution point. A positive definite Hessian is maintained
providing q sk

T
k is positive at each update and that H is initialized with a positive

definite matrix. When q sk
T

k is not positive, qk is modified on an element-by-element

basis so that q sk
T

k > 0 . The general aim of this modification is to distort the elements of
qk, which contribute to a positive definite update, as little as possible. Therefore, in the
initial phase of the modification, the most negative element of qk*sk is repeatedly halved.

This procedure is continued until q sk
T

k is greater than or equal to a small negative

tolerance. If, after this procedure, q sk
T

k is still not positive, modify qk by adding a vector
v multiplied by a constant scalar w, that is,

q q wvk k= + ,

where

 Constrained Nonlinear Optimization Algorithms

6-31

v g x g x g x g x

q w

i i k i k i k i k

k i

= () ◊ () - () ◊ ()

() ◊ <

+ +— —1 1

 if 00 0 1

0

 and

 otherwise,

q s i m

v

k i k i

i

() ◊ () < =

=

, , ...,

and increase w systematically until q sk
T

k becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If
Display is set to 'iter' in options, then various information is given such as
function values and the maximum constraint violation. When the Hessian has to be
modified using the first phase of the preceding procedure to keep it positive definite,
then Hessian modified is displayed. If the Hessian has to be modified again using
the second phase of the approach described above, then Hessian modified twice
is displayed. When the QP subproblem is infeasible, then infeasible is displayed.
Such displays are usually not a cause for concern but indicate that the problem is highly
nonlinear and that convergence might take longer than usual. Sometimes the message
no update is displayed, indicating that q sk

T
k is nearly zero. This can be an indication

that the problem setup is wrong or you are trying to minimize a noncontinuous function.
Quadratic Programming Solution

At each major iteration of the SQP method, a QP problem of the following form is solved,
where Ai refers to the ith row of the m-by-n matrix A.

min () ,

, ,...,

, ,

d

T T

i i e

i i e

n
q d d Hd c d

A d b i m

A d b i m

Œ¬

= +

= =

£ = +

1

2

1

1

 , .m

The method used in Optimization Toolbox functions is an active set strategy (also known
as a projection method) similar to that of Gill et al., described in [18] and [17]. It has been
modified for both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of
a feasible point (if one exists). The second phase involves the generation of an iterative
sequence of feasible points that converge to the solution. In this method an active set,
Ak , is maintained that is an estimate of the active constraints (i.e., those that are on the

constraint boundaries) at the solution point. Virtually all QP algorithms are active set

6 Nonlinear algorithms and examples

6-32

methods. This point is emphasized because there exist many different methods that are
very similar in structure but that are described in widely different terms.

Ak is updated at each iteration k, and this is used to form a basis for a search direction

d̂k . Equality constraints always remain in the active set Ak . The notation for the

variable d̂k is used here to distinguish it from dk in the major iterations of the SQP

method. The search direction d̂k is calculated and minimizes the objective function while

remaining on any active constraint boundaries. The feasible subspace for d̂k is formed

from a basis Zk whose columns are orthogonal to the estimate of the active set Ak (i.e.,

A Zk k = 0). Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk, is guaranteed to remain on the boundaries of the active
constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition of the

matrix Ak
T , where l is the number of active constraints and l < m. That is, Zk is given by

Z Q l mk = +[]:, : ,1

where

Q A
RT

k
T =

È

Î
Í

˘

˚
˙

0
.

Once Zk is found, a new search direction d̂k is sought that minimizes q(d) where d̂k

is in the null space of the active constraints. That is, d̂k is a linear combination of the

columns of Zk: d̂ Z pk k= for some vector p.

Then if you view the quadratic as a function of p, by substituting for d̂k , you have

q p p Z HZ p c Z pT
k
T

k
T

k() .= +

1

2

 Constrained Nonlinear Optimization Algorithms

6-33

Differentiating this with respect to p yields

—q p Z HZ p Z ck
T

k k
T

() .= +

∇q(p) is referred to as the projected gradient of the quadratic function because it is
the gradient projected in the subspace defined by Zk. The term Z HZk

T
k is called the

projected Hessian. Assuming the Hessian matrix H is positive definite (which is the
case in this implementation of SQP), then the minimum of the function q(p) in the
subspace defined by Zk occurs when ∇q(p) = 0, which is the solution of the system of
linear equations

Z HZ p Z ck
T

k k
T

= - .

A step is then taken of the form

x x d d Z pk k k k k
T

+
= + =1 a

ˆ , ˆ . where

At each iteration, because of the quadratic nature of the objective function, there are only
two choices of step length α. A step of unity along d̂k is the exact step to the minimum

of the function restricted to the null space of Ak . If such a step can be taken, without
violation of the constraints, then this is the solution to QP (Equation 6-34). Otherwise,
the step along d̂k to the nearest constraint is less than unity and a new constraint is
included in the active set at the next iteration. The distance to the constraint boundaries
in any direction d̂k is given by

a =
- -()Ï

Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂Œ{ }
min

�
,

,...,i m

i k i

i k

A x b

A d1

which is defined for constraints not in the active set, and where the direction d̂k is

towards the constraint boundary, i.e., A d i mi k
ˆ , , ...,> =0 1 .

6 Nonlinear algorithms and examples

6-34

When n independent constraints are included in the active set, without location of the
minimum, Lagrange multipliers, λk, are calculated that satisfy the nonsingular set of
linear equations

A ck
T

kl = .

If all elements of λk are positive, xk is the optimal solution of QP (Equation 6-34).
However, if any component of λk is negative, and the component does not correspond to
an equality constraint, then the corresponding element is deleted from the active set and
a new iterate is sought.

Initialization

The algorithm requires a feasible point to start. If the current point from the SQP
method is not feasible, then you can find a point by solving the linear programming
problem

min

, , ...,

,

,g
g

g

Œ¬ Œ¬

= =

- £

 such that

x

i i e

i i

n

A x b i m

A x b

1

ii m me= + 1,..., .

The notation Ai indicates the ith row of the matrix A. You can find a feasible point (if one
exists) to Equation 6-42 by setting x to a value that satisfies the equality constraints. You
can determine this value by solving an under- or overdetermined set of linear equations
formed from the set of equality constraints. If there is a solution to this problem, then the
slack variable γ is set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the search
direction to the steepest descent direction at each iteration, where gk is the gradient of
the objective function (equal to the coefficients of the linear objective function).

ˆ .d Z Z gk k k
T

k= -

If a feasible point is found using the preceding LP method, the main QP phase is entered.
The search direction d̂k is initialized with a search direction d̂

1 found from solving the
set of linear equations

 Constrained Nonlinear Optimization Algorithms

6-35

Hd gk
ˆ ,1 = -

where gk is the gradient of the objective function at the current iterate xk (i.e., Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search for the main
SQP routine d̂k is taken as one that minimizes γ.

Line Search and Merit Function

The solution to the QP subproblem produces a vector dk, which is used to form a new
iterate

x x dk k k+
= +

1
a .

The step length parameter αk is determined in order to produce a sufficient decrease in a
merit function. The merit function used by Han [22] and Powell [33] of the following form
is used in this implementation.

Y() () () max[, ()].x f x r g x r g xi i

i

m

i i

i m

me

e

= + ◊ + ◊

= = +

Â Â
1 1

0

Powell recommends setting the penalty parameter

r r
r

i mi k i
i

i

k i i
= () =

() +Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=+1

2
1max , , , ..., .l

l

This allows positive contribution from constraints that are inactive in the QP solution
but were recently active. In this implementation, the penalty parameter ri is initially set
to

r
f x

g x
i

i

=
—

—

()

()
,

where represents the Euclidean norm.

6 Nonlinear algorithms and examples

6-36

This ensures larger contributions to the penalty parameter from constraints with smaller
gradients, which would be the case for active constraints at the solution point.

fmincon SQP Algorithm

The sqp algorithm is similar to the active-set algorithm (for a description, see
“fmincon Active Set Algorithm” on page 6-26). The basic sqp algorithm is described in
Chapter 18 of Nocedal and Wright [31].

The most important differences between the sqp and the active-set algorithms are:

Strict Feasibility With Respect to Bounds

The sqp algorithm takes every iterative step in the region constrained by bounds.
Furthermore, finite difference steps also respect bounds. Bounds are not strict; a step
can be exactly on a boundary. This strict feasibility can be beneficial when your objective
function or nonlinear constraint functions are undefined or are complex outside the
region constrained by bounds.

Robustness to Non-Double Results

During its iterations, the sqp algorithm can attempt to take a step that fails. This means
an objective function or nonlinear constraint function you supply returns a value of Inf,
NaN, or a complex value. In this case, the algorithm attempts to take a smaller step.

Refactored Linear Algebra Routines

The sqp algorithm uses a different set of linear algebra routines to solve the quadratic
programming subproblem, Equation 6-30. These routines are more efficient in both
memory usage and speed than the active-set routines.

Reformulated Feasibility Routines

The sqp algorithm has two new approaches to the solution of Equation 6-30 when
constraints are not satisfied.

• The sqp algorithm combines the objective and constraint functions into a merit
function. The algorithm attempts to minimize the merit function subject to relaxed
constraints. This modified problem can lead to a feasible solution. However, this
approach has more variables than the original problem, so the problem size in
Equation 6-30 increases. The increased size can slow the solution of the subproblem.

 Constrained Nonlinear Optimization Algorithms

6-37

These routines are based on the articles by Spellucci [60] and Tone [61]. The sqp
algorithm sets the penalty parameter for the merit function Equation 6-46 according
to the suggestion in [41].

• Suppose nonlinear constraints are not satisfied, and an attempted step causes the
constraint violation to grow. The sqp algorithm attempts to obtain feasibility using a
second-order approximation to the constraints. The second-order technique can lead
to a feasible solution. However, this technique can slow the solution by requiring more
evaluations of the nonlinear constraint functions.

fmincon Interior Point Algorithm

Barrier Function

The interior-point approach to constrained minimization is to solve a sequence of
approximate minimization problems. The original problem is

min (), () () .
x

f x h x g x subject to and = £0 0

For each μ > 0, the approximate problem is

min (,) min () ln , ()
, ,x s x s

i
i

f x s f x s h xm m= - () =Â subject to and 0 gg x s() .+ = 0

There are as many slack variables si as there are inequality constraints g. The si are
restricted to be positive to keep ln(si) bounded. As μ decreases to zero, the minimum of
fμ should approach the minimum of f. The added logarithmic term is called a barrier
function. This method is described in [40], [41], and [51].

The approximate problem Equation 6-50 is a sequence of equality constrained problems.
These are easier to solve than the original inequality-constrained problem Equation 6-49.

To solve the approximate problem, the algorithm uses one of two main types of steps at
each iteration:

• A direct step in (x, s). This step attempts to solve the KKT equations, Equation 3-2
and Equation 3-3, for the approximate problem via a linear approximation. This is
also called a Newton step.

• A CG (conjugate gradient) step, using a trust region.

6 Nonlinear algorithms and examples

6-38

By default, the algorithm first attempts to take a direct step. If it cannot, it attempts a
CG step. One case where it does not take a direct step is when the approximate problem
is not locally convex near the current iterate.

At each iteration the algorithm decreases a merit function, such as

f x s h x g x sm n(,) (), () .+ +()

The parameter n may increase with iteration number in order to force the solution
towards feasibility. If an attempted step does not decrease the merit function, the
algorithm rejects the attempted step, and attempts a new step.

If either the objective function or a nonlinear constraint function returns a complex
value, NaN, Inf, or an error at an iterate xj, the algorithm rejects xj. The rejection has
the same effect as if the merit function did not decrease sufficiently: the algorithm then
attempts a different, shorter step. Wrap any code that can error in try-catch:

function val = userFcn(x)

try

 val = ... % code that can error

catch

 val = NaN;

end

The objective and constraints must yield proper (double) values at the initial point.

Direct Step

The following variables are used in defining the direct step:

• H denotes the Hessian of the Lagrangian of fμ:

H f x g x h xi i

i

j j

j

= + +Â Â— — —
2 2 2

() () ().l l

• Jg denotes the Jacobian of the constraint function g.
• Jh denotes the Jacobian of the constraint function h.
• S = diag(s).
• λ denotes the Lagrange multiplier vector associated with constraints g
• Λ = diag(λ).

 Constrained Nonlinear Optimization Algorithms

6-39

• y denotes the Lagrange multiplier vector associated with h.
• e denote the vector of ones the same size as g.

Equation 6-52 defines the direct step (Δx, Δs):

H J J

S S

J I

J S I

x

s

y

h
T

g
T

h

g

0

0 0

0 0

0

L

D

D

D

D

-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙

l

˙̇
˙
˙

= -

- -

-

+

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

—f J y J

S e

h

g s

h
T

g
T l

l m
.

This equation comes directly from attempting to solve Equation 3-2 and Equation 3-3
using a linearized Lagrangian.

In order to solve this equation for (Δx, Δs), the algorithm makes an LDL factorization of
the matrix. (See Example 3 — The Structure of D in the MATLAB ldl function reference
page.) This is the most computationally expensive step. One result of this factorization
is a determination of whether the projected Hessian is positive definite or not; if not, the
algorithm uses a conjugate gradient step, described in the next section.

Conjugate Gradient Step

The conjugate gradient approach to solving the approximate problem Equation 6-50
is similar to other conjugate gradient calculations. In this case, the algorithm adjusts
both x and s, keeping the slacks s positive. The approach is to minimize a quadratic
approximation to the approximate problem in a trust region, subject to linearized
constraints.

Specifically, let R denote the radius of the trust region, and let other variables be defined
as in “Direct Step” on page 6-38. The algorithm obtains Lagrange multipliers by
approximately solving the KKT equations

— — — —x x i i

i

j j

j

L f x g x y h x= + + =Â Â() () () ,l 0

in the least-squares sense, subject to λ being positive. Then it takes a step (Δx, Δs) to
approximately solve

min ,
,D D

D D D D D LD
x s

T T
xx

T Tf x x L x e S s s S s— —2+ + +- -1

2

1

2

1 1m

6 Nonlinear algorithms and examples

6-40

subject to the linearized constraints

g x J x s h x J xg h() , () .+ + = + =D D D0 0

To solve Equation 6-54, the algorithm tries to minimize a norm of the linearized
constraints inside a region with radius scaled by R. Then Equation 6-53 is solved
with the constraints being to match the residual from solving Equation 6-54, staying
within the trust region of radius R, and keeping s strictly positive. For details of the
algorithm and the derivation, see [40], [41], and [51]. For another description of conjugate
gradients, see “Preconditioned Conjugate Gradient Method” on page 6-23.

Interior-Point Algorithm Options

Here are the meanings and effects of several options in the interior-point algorithm.

• AlwaysHonorConstraints — When set to 'bounds', every iterate satisfies the
bound constraints you have set. When set to 'none', the algorithm may violate
bounds during intermediate iterations.

• Hessian — When set to:

• 'user-supplied', pass the Hessian of the Lagrangian in a user-supplied
function, whose function handle must be given in the option HessFcn.

• 'bfgs', fmincon calculates the Hessian by a dense quasi-Newton approximation.
• 'lbfgs', fmincon calculates the Hessian by a limited-memory, large-scale quasi-

Newton approximation.
• 'fin-diff-grads', fmincon calculates a Hessian-times-vector product by finite

differences of the gradient(s); other options need to be set appropriately.

You can also give a separate function for Hessian-times-vector. See “Hessian” on page
14-60 and “Hessian Multiply Function” on page 14-62 for more details on these
options.

• InitBarrierParam — The starting value for μ. By default, this is 0.1.
• ScaleProblem — When set to 'obj-and-constr', the algorithm works with scaled

versions of the objective function and constraints. It carefully scales them by their
initial values. Disable scaling by setting ScaleProblem to 'none'.

• SubproblemAlgorithm — Determines whether or not to attempt the direct Newton
step. The default setting 'ldl-factorization' allows this type of step to be
attempted. The setting 'cg' allows only conjugate gradient steps.

 Constrained Nonlinear Optimization Algorithms

6-41

For a complete list of options see Interior-Point Algorithm in fmincon options.

fminbnd Algorithm

fminbnd is a solver available in any MATLAB installation. It solves for a local minimum
in one dimension within a bounded interval. It is not based on derivatives. Instead, it
uses golden-section search and parabolic interpolation.

fseminf Problem Formulation and Algorithm

fseminf Problem Formulation

fseminf addresses optimization problems with additional types of constraints compared
to those addressed by fmincon. The formulation of fmincon is

min ()
x

f x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

fseminf adds the following set of semi-infinite constraints to those already given. For wj
in a one- or two-dimensional bounded interval or rectangle Ij, for a vector of continuous
functions K(x, w), the constraints are
Kj(x, wj) ≤ 0 for all wj ∈ Ij.

The term “dimension” of an fseminf problem means the maximal dimension of the
constraint set I: 1 if all Ij are intervals, and 2 if at least one Ij is a rectangle. The size of
the vector of K does not enter into this concept of dimension.

The reason this is called semi-infinite programming is that there are a finite number
of variables (x and wj), but an infinite number of constraints. This is because the
constraints on x are over a set of continuous intervals or rectangles Ij, which contains an
infinite number of points, so there are an infinite number of constraints: Kj(x, wj) ≤ 0 for
an infinite number of points wj.

You might think a problem with an infinite number of constraints is impossible to
solve. fseminf addresses this by reformulating the problem to an equivalent one that
has two stages: a maximization and a minimization. The semi-infinite constraints are
reformulated as

6 Nonlinear algorithms and examples

6-42

max (,) , ..., ,
w I

j j
j j

K x w j K
Œ

£ =0 1 for all

where |K| is the number of components of the vector K; i.e., the number of semi-infinite
constraint functions. For fixed x, this is an ordinary maximization over bounded intervals
or rectangles.

fseminf further simplifies the problem by making piecewise quadratic or cubic
approximations κj(x, wj) to the functions Kj(x, wj), for each x that the solver visits.
fseminf considers only the maxima of the interpolation function κj(x, wj), instead
of Kj(x, wj), in Equation 6-55. This reduces the original problem, minimizing a semi-
infinitely constrained function, to a problem with a finite number of constraints.

Sampling Points

Your semi-infinite constraint function must provide a set of sampling points, points used
in making the quadratic or cubic approximations. To accomplish this, it should contain:

• The initial spacing s between sampling points w
• A way of generating the set of sampling points w from s

The initial spacing s is a |K|-by-2 matrix. The jth row of s represents the spacing
for neighboring sampling points for the constraint function Kj. If Kj depends on a
one-dimensional wj, set s(j,2) = 0. fseminf updates the matrix s in subsequent
iterations.

fseminf uses the matrix s to generate the sampling points w, which it then uses to
create the approximation κj(x, wj). Your procedure for generating w from s should keep
the same intervals or rectangles Ij during the optimization.

Example of Creating Sampling Points

Consider a problem with two semi-infinite constraints, K1 and K2. K1 has one-
dimensional w1, and K2 has two-dimensional w2. The following code generates a sampling
set from w1 = 2 to 12:

% Initial sampling interval

if isnan(s(1,1))

 s(1,1) = .2;

 s(1,2) = 0;

end

 Constrained Nonlinear Optimization Algorithms

6-43

% Sampling set

w1 = 2:s(1,1):12;

fseminf specifies s as NaN when it first calls your constraint function. Checking for this
allows you to set the initial sampling interval.

The following code generates a sampling set from w2 in a square, with each component
going from 1 to 100, initially sampled more often in the first component than the second:

% Initial sampling interval

if isnan(s(1,1))

 s(2,1) = 0.2;

 s(2,2) = 0.5;

end

% Sampling set

w2x = 1:s(2,1):100;

w2y = 1:s(2,2):100;

[wx,wy] = meshgrid(w2x,w2y);

The preceding code snippets can be simplified as follows:

% Initial sampling interval

if isnan(s(1,1))

 s = [0.2 0;0.2 0.5];

end

% Sampling set

w1 = 2:s(1,1):12;

w2x = 1:s(2,1):100;

w2y = 1:s(2,2):100;

[wx,wy] = meshgrid(w2x,w2y);

fseminf Algorithm

fseminf essentially reduces the problem of semi-infinite programming to a problem
addressed by fmincon. fseminf takes the following steps to solve semi-infinite
programming problems:

1 At the current value of x, fseminf identifies all the wj,i such that the interpolation
κj(x, wj,i) is a local maximum. (The maximum refers to varying w for fixed x.)

2 fseminf takes one iteration step in the solution of the fmincon problem:

6 Nonlinear algorithms and examples

6-44

min ()
x

f x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u, where c(x) is
augmented with all the maxima of κj(x, wj) taken over all wj ∈ Ij, which is equal to
the maxima over j and i of κj(x, wj,i).

3 fseminf checks if any stopping criterion is met at the new point x (to halt the
iterations); if not, it continues to step 4.

4 fseminf checks if the discretization of the semi-infinite constraints needs
updating, and updates the sampling points appropriately. This provides an updated
approximation κj(x, wj). Then it continues at step 1.

 Nonlinear Inequality Constraints

6-45

Nonlinear Inequality Constraints

This example shows how to solve a scalar minimization problem with nonlinear
inequality constraints. The problem is to find x that solves

min () .
x

xf x e x x x x x= + + + +()1 4 2 4 2 11
2

2
2

1 2 2

subject to the constraints
x1x2 – x1 – x2 ≤ –1.5,
x1x2 ≥ –10.

Because neither of the constraints is linear, you cannot pass the constraints to fmincon
at the command line. Instead you can create a second file, confun.m, that returns the
value at both constraints at the current x in a vector c. The constrained optimizer,
fmincon, is then invoked. Because fmincon expects the constraints to be written in the
form c(x) ≤ 0, you must rewrite your constraints in the form

x1x2 – x1 – x2 + 1.5 ≤ 0,
–x1x2 –10 ≤ 0.

Step 1: Write a file objfun.m for the objective function.

function f = objfun(x)

f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Write a file confun.m for the constraints.

function [c, ceq] = confun(x)

% Nonlinear inequality constraints

c = [1.5 + x(1)*x(2) - x(1) - x(2);

 -x(1)*x(2) - 10];

% Nonlinear equality constraints

ceq = [];

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution

options = optimoptions(@fmincon,'Algorithm','sqp');

[x,fval] = ...

6 Nonlinear algorithms and examples

6-46

fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

fmincon produces the solution x with function value fval:

x,fval

x =

 -9.5474 1.0474

fval =

 0.0236

You can evaluate the constraints at the solution by entering

[c,ceq] = confun(x)

This returns numbers close to zero, such as

c =

 1.0e-14 *

 -0.6661

 0.7105

ceq =

 []

Note that both constraint values are, to within a small tolerance, less than or equal to 0;
that is, x satisfies c(x) ≤ 0.

Related Examples
• “Nonlinear Equality and Inequality Constraints” on page 6-61
• “Nonlinear Constraints with Gradients” on page 6-47

 Nonlinear Constraints with Gradients

6-47

Nonlinear Constraints with Gradients

Ordinarily, minimization routines use numerical gradients calculated by finite-difference
approximation. This procedure systematically perturbs each of the variables in order
to calculate function and constraint partial derivatives. Alternatively, you can provide
a function to compute partial derivatives analytically. Typically, the problem is solved
more accurately and efficiently if such a function is provided.

Consider how to solve

min () .
x

xf x e x x x x x= + + + +()1 4 2 4 2 11
2

2
2

1 2 2

subject to the constraints
x1x2 – x1 – x2 ≤ –1.5,
x1x2 ≥ –10.

To solve the problem using analytically determined gradients, do the following.

Step 1: Write a file for the objective function and gradient.

function [f,gradf] = objfungrad(x)

f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

% Gradient of the objective function:

if nargout > 1

 gradf = [f + exp(x(1)) * (8*x(1) + 4*x(2)),

 exp(x(1))*(4*x(1)+4*x(2)+2)];

end

Step 2: Write a file for the nonlinear constraints and the gradients of the
nonlinear constraints.

function [c,ceq,DC,DCeq] = confungrad(x)

c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); % Inequality constraints

c(2) = -x(1) * x(2)-10;

% No nonlinear equality constraints

ceq=[];

% Gradient of the constraints:

if nargout > 2

 DC= [x(2)-1, -x(2);

6 Nonlinear algorithms and examples

6-48

 x(1)-1, -x(1)];

 DCeq = [];

end

gradf contains the partial derivatives of the objective function, f, returned by
objfungrad(x), with respect to each of the elements in x:

—f
e x x x x x e x x

e x x

x x

x
=

+ + + +() + +()

+ +()

È

Î

1 1

1

4 2 4 2 1 8 4

4 4 2

1

2

2

2

1 2 2 1 2

1 2

ÍÍ
Í
Í

˘

˚

˙
˙
˙

.

The columns of DC contain the partial derivatives for each respective constraint (i.e., the
ith column of DC is the partial derivative of the ith constraint with respect to x). So in
the above example, DC is

∂

∂

∂

∂

∂

∂

∂

∂

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=
- -

- -

È

Î
Í

˘

˚
˙

c

x

c

x

c

x

c

x

x x

x x

1

1

2

1

1

2

2

2

2 2

1 1

1

1
.

Since you are providing the gradient of the objective in objfungrad.m and the gradient
of the constraints in confungrad.m, you must tell fmincon that these files contain
this additional information. Use optimoptions to turn the options GradObj and
GradConstr to 'on' in the example's existing options:

options = optimoptions(options,'GradObj','on','GradConstr','on');

If you do not set these options to 'on', fmincon does not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent variables in
x. In this example, there are no bound constraints, so set both to [].

Step 3: Invoke the constrained optimization routine.

x0 = [-1,1]; % Starting guess

options = optimoptions(@fmincon,'Algorithm','sqp');

options = optimoptions(options,'GradObj','on','GradConstr','on');

lb = []; ub = []; % No upper or lower bounds

[x,fval] = fmincon(@objfungrad,x0,[],[],[],[],lb,ub,...

 @confungrad,options);

 Nonlinear Constraints with Gradients

6-49

The results:

x,fval

x =

 -9.5474 1.0474

fval =

 0.0236

[c,ceq] = confungrad(x) % Check the constraint values at x

c =

 1.0e-13 *

 -0.1066

 0.1066

ceq =

 []

6 Nonlinear algorithms and examples

6-50

fmincon Interior-Point Algorithm with Analytic Hessian
The fmincon interior-point algorithm can accept a Hessian function as an input. When
you supply a Hessian, you may obtain a faster, more accurate solution to a constrained
minimization problem.

The constraint set for this example is the intersection of the interior of two cones—one
pointing up, and one pointing down. The constraint function c is a two-component vector,
one component for each cone. Since this is a three-dimensional example, the gradient of
the constraint c is a 3-by-2 matrix.

function [c ceq gradc gradceq] = twocone(x)

% This constraint is two cones, z > -10 + r

% and z < 3 - r

ceq = [];

r = sqrt(x(1)^2 + x(2)^2);

c = [-10+r-x(3);

 x(3)-3+r];

if nargout > 2

 gradceq = [];

 gradc = [x(1)/r,x(1)/r;

 x(2)/r,x(2)/r;

 -1,1];

end

The objective function grows rapidly negative as the x(1) coordinate becomes negative.
Its gradient is a three-element vector.

function [f gradf] = bigtoleft(x)

% This is a simple function that grows rapidly negative

% as x(1) gets negative

%

f=10*x(1)^3+x(1)*x(2)^2+x(3)*(x(1)^2+x(2)^2);

if nargout > 1

 gradf=[30*x(1)^2+x(2)^2+2*x(3)*x(1);

 2*x(1)*x(2)+2*x(3)*x(2);

 (x(1)^2+x(2)^2)];

end

 fmincon Interior-Point Algorithm with Analytic Hessian

6-51

Here is a plot of the problem. The shading represents the value of the objective function.
You can see that the objective function is minimized near x = [-6.5,0,-3.5]:

The Hessian of the Lagrangian is given by the equation:

— — — —xx i i i iL x f x c x ceq x2 2 2 2(,) () () ().l l l= + +Â Â

The following function computes the Hessian at a point x with Lagrange multiplier
structure lambda:

function h = hessinterior(x,lambda)

h = [60*x(1)+2*x(3),2*x(2),2*x(1);

 2*x(2),2*(x(1)+x(3)),2*x(2);

6 Nonlinear algorithms and examples

6-52

 2*x(1),2*x(2),0];% Hessian of f

r = sqrt(x(1)^2+x(2)^2);% radius

rinv3 = 1/r^3;

hessc = [(x(2))^2*rinv3,-x(1)*x(2)*rinv3,0;

 -x(1)*x(2)*rinv3,x(1)^2*rinv3,0;

 0,0,0];% Hessian of both c(1) and c(2)

h = h + lambda.ineqnonlin(1)*hessc + lambda.ineqnonlin(2)*hessc;

Run this problem using the interior-point algorithm in fmincon. To do this using the
Optimization app:

1 Set the problem as in the following figure.

2 For iterative output, scroll to the bottom of the Options pane and select Level of
display, iterative.

 fmincon Interior-Point Algorithm with Analytic Hessian

6-53

3 In the Options pane, give the analytic Hessian function handle.

4 Under Run solver and view results, click Start.

To perform the minimization at the command line:

1 Set options as follows:

6 Nonlinear algorithms and examples

6-54

options = optimoptions(@fmincon,'Algorithm','interior-point',...

 'Display','off','GradObj','on','GradConstr','on',...

 'Hessian','user-supplied','HessFcn',@hessinterior);

2 Run fmincon with starting point [–1,–1,–1], using the options structure:

[x fval mflag output] = fmincon(@bigtoleft,[-1,-1,-1],...

 [],[],[],[],[],[],@twocone,options)

The output is:

x =

 -6.5000 -0.0000 -3.5000

fval =

 -2.8941e+03

mflag =

 1

output =

 iterations: 6

 funcCount: 7

 constrviolation: 0

 stepsize: 3.0479e-05

 algorithm: 'interior-point'

 firstorderopt: 5.9812e-05

 cgiterations: 3

 message: 'Local minimum found that satisfies the constraints.…'

If you do not use a Hessian function, fmincon takes 9 iterations to converge, instead of 6:

options = optimoptions(@fmincon,'Algorithm','interior-point',...

 'Display','off','GradObj','on','GradConstr','on');

[x fval mflag output]=fmincon(@bigtoleft,[-1,-1,-1],...

 [],[],[],[],[],[],@twocone,options)

x =

 -6.5000 -0.0000 -3.5000

fval =

 -2.8941e+03

mflag =

 fmincon Interior-Point Algorithm with Analytic Hessian

6-55

 1

output =

 iterations: 9

 funcCount: 13

 constrviolation: 2.9391e-08

 stepsize: 6.4842e-04

 algorithm: 'interior-point'

 firstorderopt: 1.4235e-04

 cgiterations: 0

 message: 'Local minimum found that satisfies the constraints.…'

Both runs lead to similar solutions, but the F-count and number of iterations are lower
when using an analytic Hessian.

Related Examples
• “Linear or Quadratic Objective with Quadratic Constraints” on page 6-56
• “Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-80

6 Nonlinear algorithms and examples

6-56

Linear or Quadratic Objective with Quadratic Constraints

This example shows how to solve an optimization problem that has a linear or quadratic
objective and quadratic inequality constraints. It shows how to generate and use the
gradient and Hessian of the objective and constraint functions.

Quadratic Constrained Problem

Suppose that you can put your problem in the form

min
x

T Tx Qx f x c
1

2
+ +Ê

Ë
Á

ˆ
¯
˜

subject to

1

2
0x H x k x d

T
i i

T
i+ + £ ,

where 1 ≤ i ≤ m. Assume that at least one Hi is nonzero; otherwise, you can use
quadprog or linprog to solve this problem. With nonzero Hi, the constraints are
nonlinear, and the “Optimization Decision Table” on page 2-5 states that fmincon is the
appropriate solver.

If x has N components, then Q and the Hi are N-by-N matrices, f and the ki are N-by-1
vectors, and c and the di are scalars.

Objective Function

Formulate the problem using fmincon syntax. Assume that x and f are column vectors.
(x is a column vector when the initial vector x0 is.)

function [y,grady] = quadobj(x,Q,f,c)

y = 1/2*x'*Q*x + f'*x + c;

if nargout > 1

 grady = Q*x + f;

end

Constraint Function

For consistency and easy indexing, place every quadratic constraint matrix in one cell
array. Similarly, place the linear and constant terms in cell arrays.

 Linear or Quadratic Objective with Quadratic Constraints

6-57

function [y,yeq,grady,gradyeq] = quadconstr(x,H,k,d)

jj = length(H); % jj is the number of inequality constraints

y = zeros(1,jj);

for i = 1:jj

 y(i) = 1/2*x'*H{i}*x + k{i}'*x + d{i};

end

yeq = [];

if nargout > 2

 grady = zeros(length(x),jj);

 for i = 1:jj

 grady(:,i) = H{i}*x + k{i};

 end

end

gradyeq = [];

Numeric Example

For example, suppose that you have the following problem.

Q = [3,2,1;

 2,4,0;

 1,0,5];

f = [-24;-48;-130];

c = -2;

rng default % for reproducibility

% Two sets of random quadratic constraints:

H{1} = gallery('randcorr',3); % random positive definite matrix

H{2} = gallery('randcorr',3);

k{1} = randn(3,1);

k{2} = randn(3,1);

d{1} = randn;

d{2} = randn;

Hessian

Create a Hessian function. The Hessian of the Lagrangian is given by the equation

— — — —xx i i i iL x f x c x ceq x2 2 2 2(,) () () ().l l l= + +Â Â

fmincon calculates an approximate set of Lagrange multipliers λi, and packages them in
a structure. To include the Hessian, use the following function.

6 Nonlinear algorithms and examples

6-58

function hess = quadhess(x,lambda,Q,H)

hess = Q;

jj = length(H); % jj is the number of inequality constraints

for i = 1:jj

 hess = hess + lambda.ineqnonlin(i)*H{i};

end

Solution

Use the fmincon interior-point algorithm to solve the problem most efficiently. This
algorithm accepts a Hessian function that you supply. Set these options.

options = optimoptions(@fmincon,'Algorithm','interior-point',...

 'GradObj','on','GradConstr','on','Hessian','user-supplied',...

 'HessFcn',@(x,lambda)quadhess(x,lambda,Q,H));

Call fmincon to solve the problem.

fun = @(x)quadobj(x,Q,f,c);

nonlconstr = @(x)quadconstr(x,H,k,d);

x0 = [0;0;0]; % column vector

[x,fval,eflag,output,lambda] = fmincon(fun,x0,...

 [],[],[],[],[],[],nonlconstr,options);

Examine the Lagrange multipliers.

lambda.ineqnonlin

ans =

 12.8412

 39.2337

Both nonlinear inequality multipliers are nonzero, so both quadratic constraints are
active at the solution.

Efficiency When Providing a Hessian

The interior-point algorithm with gradients and a Hessian is efficient. Examine the
number of function evaluations.

output

output =

 Linear or Quadratic Objective with Quadratic Constraints

6-59

 iterations: 9

 funcCount: 10

 constrviolation: 0

 stepsize: 5.3547e-04

 algorithm: 'interior-point'

 firstorderopt: 1.5851e-05

 cgiterations: 0

 message: 'Local minimum found that satisfies the constraints.

Optimization compl...'

fmincon used just 10 function evaluations to solve the problem.

Compare this to the solution without the Hessian.

options.Hessian = 'off';

[x2,fval2,eflag2,output2,lambda2] = fmincon(fun,[0;0;0],...

 [],[],[],[],[],[],nonlconstr,options);

output2

output2 =

 iterations: 17

 funcCount: 22

 constrviolation: 0

 stepsize: 2.8475e-04

 algorithm: 'interior-point'

 firstorderopt: 1.7680e-05

 cgiterations: 0

 message: 'Local minimum found that satisfies the constraints.

Optimization compl...'

This time fmincon used about twice as many iterations and function evaluations. The
solutions are the same to within tolerances.

Extension to Quadratic Equality Constraints

If you also have quadratic equality constraints, you can use essentially the same
technique. The problem is the same, with the additional constraints

1

2
0x J x p x qT

i i
T

i+ + = .

6 Nonlinear algorithms and examples

6-60

Reformulate your constraints to use the Ji, pi, and qi variables. The
lambda.eqnonlin(i) structure has the Lagrange multipliers for equality constraints.

Related Examples
• “fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-50

More About
• “Including Derivatives” on page 2-20
• “Including Gradients in Constraint Functions” on page 2-35

 Nonlinear Equality and Inequality Constraints

6-61

Nonlinear Equality and Inequality Constraints

You can include nonlinear constraints by writing a function that computes both equality
and inequality constraint values. A nonlinear constraint function has the syntax
[c,ceq] = nonlinconstr(x)

The function c(x) represents the constraint c(x) <= 0. The function ceq(x)
represents the constraint ceq(x) = 0.

Note: You must have the nonlinear constraint function return both c(x) and ceq(x),
even if you have only one type of nonlinear constraint. If a constraint does not exist, have
the function return [] for that constraint.

For example, if you have the nonlinear equality constraint x x
1

2

2
1+ = and the nonlinear

inequality constraint x1x2 ≥ –10, rewrite them as

x x

x x

1
2

2

1 2

1 0

10 0

+ - =

- - £

,

,

and then solve the problem using the following steps.

Step 1: Write a file objfun.m.

function f = objfun(x)

f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Write a file confuneq.m for the nonlinear constraints.

function [c,ceq] = confuneq(x)

% Nonlinear inequality constraints

c = -x(1)*x(2) - 10;

% Nonlinear equality constraints

ceq = x(1)^2 + x(2) - 1;

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution

6 Nonlinear algorithms and examples

6-62

options = optimoptions(@fmincon,'Algorithm','sqp');

[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],...

 @confuneq,options);

After 21 function evaluations, the solution produced is

x,fval

x =

 -0.7529 0.4332

fval =

 1.5093

[c,ceq] = confuneq(x) % Check the constraint values at x

c =

 -9.6739

ceq =

 5.3291e-15

Note that ceq is equal to 0 within the default tolerance on the constraints of 1.0e-006
and that c is less than or equal to 0, as desired.

Related Examples
• “Nonlinear Inequality Constraints” on page 6-45
• “Optimization App with the fmincon Solver” on page 6-63

 Optimization App with the fmincon Solver

6-63

Optimization App with the fmincon Solver

This example shows how to use the Optimization app with the fmincon solver to
minimize a quadratic subject to linear and nonlinear constraints and bounds.

Note: The Optimization app warns that it will be removed in a future release.

Consider the problem of finding [x1, x2] that solves

min ()
x

f x x x= +1
2

2
2

subject to the constraints

0 5

1 0

1 0

9

1

1 2

1
2

2
2

1

. £

- - + £

- - + £

-

x

x x

x x

x

(bound)

(linear inequality)

22
2
2

1
2

2

2
2

1

9 0

0

0

- + £

- + £

- + £

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

x

x x

x x

(nonlinear inequality))

The starting guess for this problem is x1 = 3 and x2 = 1.

Step 1: Write a file objecfun.m for the objective function.

function f = objecfun(x)

f = x(1)^2 + x(2)^2;

Step 2: Write a file nonlconstr.m for the nonlinear constraints.

function [c,ceq] = nonlconstr(x)

c = [-x(1)^2 - x(2)^2 + 1;

 -9*x(1)^2 - x(2)^2 + 9;

 -x(1)^2 + x(2);

 -x(2)^2 + x(1)];

ceq = [];

6 Nonlinear algorithms and examples

6-64

Step 3: Set up and run the problem with the Optimization app.

1 Enter optimtool in the Command Window to open the Optimization app.
2 Select fmincon from the selection of solvers and change the Algorithm field to

Active set.

3 Enter @objecfun in the Objective function field to call the objecfun.m file.
4 Enter [3;1] in the Start point field.

5 Define the constraints.

• Set the bound 0.5 ≤ x1 by entering [0.5,-Inf] in the Lower field. The -Inf
entry means there is no lower bound on x2.

• Set the linear inequality constraint by entering [-1 -1] in the A field and enter
-1 in the b field.

• Set the nonlinear constraints by entering @nonlconstr in the Nonlinear
constraint function field.

 Optimization App with the fmincon Solver

6-65

6 In the Options pane, expand the Display to command window option if
necessary, and select Iterative to show algorithm information at the Command
Window for each iteration.

7 Click the Start button as shown in the following figure.

8 When the algorithm terminates, under Run solver and view results the following
information is displayed:

6 Nonlinear algorithms and examples

6-66

• The Current iteration value when the algorithm terminated, which for this
example is 7.

• The final value of the objective function when the algorithm terminated:

Objective function value: 2.0000000268595803

• The algorithm termination message:
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

• The final point, which for this example is

 1

 1

9 In the Command Window, the algorithm information is displayed for each iteration:

 Optimization App with the fmincon Solver

6-67

 Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

 0 3 10 2 Infeasible start point

 1 6 4.84298 -0.1322 1 -5.22 1.74

 2 9 4.0251 -0.01168 1 -4.39 4.08 Hessian modified twice

 3 12 2.42704 -0.03214 1 -3.85 1.09

 4 15 2.03615 -0.004728 1 -3.04 0.995 Hessian modified twice

 5 18 2.00033 -5.596e-005 1 -2.82 0.0664 Hessian modified twice

 6 21 2 -5.327e-009 1 -2.81 0.000522 Hessian modified twice

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Active inequalities (to within options.TolCon = 1e-006):

 lower upper ineqlin ineqnonlin

 3

 4

6 Nonlinear algorithms and examples

6-68

Minimization with Bound Constraints and Banded Preconditioner

The goal in this problem is to minimize the nonlinear function

f x x x x x x xi i i i

p

i

n

i i n
p

i

n

() ,/

/

= + -() - - + + +- +
=

+
=

Â Â1 3 2 11 1
1

2
1

2

such that -10.0 ≤ xi ≤ 10.0, where n is 800 (n should be a multiple of 4), p = 7/3, and
x0 = xn + 1 = 0.

Step 1: Write a file tbroyfg.m that computes the objective function and
the gradient of the objective

The tbroyfg.m file computes the function value and gradient. This file is long and is not
included here. You can see the code for this function using the command

type tbroyfg

The sparsity pattern of the Hessian matrix has been predetermined and stored in the file
tbroyhstr.mat. The sparsity structure for the Hessian of this problem is banded, as
you can see in the following spy plot.

load tbroyhstr

spy(Hstr)

 Minimization with Bound Constraints and Banded Preconditioner

6-69

In this plot, the center stripe is itself a five-banded matrix. The following plot shows the
matrix more clearly:

spy(Hstr(1:20,1:20))

6 Nonlinear algorithms and examples

6-70

Use optimoptions to set the HessPattern parameter to Hstr. When a problem as
large as this has obvious sparsity structure, not setting the HessPattern parameter
requires a huge amount of unnecessary memory and computation. This is because
fmincon attempts to use finite differencing on a full Hessian matrix of 640,000 nonzero
entries.

You must also set the GradObj parameter to 'on' using optimoptions, since the
gradient is computed in tbroyfg.m. Then execute fmincon as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting point xstart.

fun = @tbroyfg;

load tbroyhstr % Get Hstr, structure of the Hessian

 Minimization with Bound Constraints and Banded Preconditioner

6-71

n = 800;

xstart = -ones(n,1); xstart(2:2:n) = 1;

lb = -10*ones(n,1); ub = -lb;

options = optimoptions('fmincon','GradObj','on','HessPattern',Hstr,...

 'Algorithm','trust-region-reflective');

[x,fval,exitflag,output] = ...

 fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

After seven iterations, the exitflag, fval, and output values are

exitflag =

 3

fval =

 270.4790

output =

 iterations: 7

 funcCount: 8

 stepsize: 8.2073e-04

 cgiterations: 18

 firstorderopt: 0.0163

 algorithm: 'trust-region-reflective'

 message: 'Local minimum possible.…'

 constrviolation: 0

For bound constrained problems, the first-order optimality is the infinity norm of v.*g,
where v is defined as in “Box Constraints” on page 6-25, and g is the gradient.

Because of the five-banded center stripe, you can improve the solution by using a
five-banded preconditioner instead of the default diagonal preconditioner. Using the
optimoptions function, reset the PrecondBandWidth parameter to 2 and solve the
problem again. (The bandwidth is the number of upper (or lower) diagonals, not counting
the main diagonal.)

fun = @tbroyfg;

load tbroyhstr % Get Hstr, structure of the Hessian

n = 800;

xstart = -ones(n,1); xstart(2:2:n,1) = 1;

lb = -10*ones(n,1); ub = -lb;

options = optimoptions('fmincon','GradObj','on','HessPattern',Hstr, ...

 'Algorithm','trust-region-reflective','PrecondBandWidth',2);

[x,fval,exitflag,output] = ...

6 Nonlinear algorithms and examples

6-72

 fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

The number of iterations actually goes up by two; however the total number of CG
iterations drops from 18 to 15. The first-order optimality measure is reduced by a factor
of 1e-3:

exitflag =

 3

fval =

 270.4790

output =

 iterations: 9

 funcCount: 10

 stepsize: 2.4512e-05

 cgiterations: 15

 firstorderopt: 7.5340e-05

 algorithm: 'trust-region-reflective'

 message: 'Local minimum possible.…'

 constrviolation: 0

 Minimization with Linear Equality Constraints

6-73

Minimization with Linear Equality Constraints

The trust-region reflective method for fmincon can handle linear equality constraints if
no other constraints exist. Suppose you want to minimize

f x x xi

x

i

x

i

n
i i

() ,= () + ()Ê

Ë
ÁÁ

ˆ

¯
˜̃

+ +()
+

+()
=

-

Â 2
1

1
2

1

1

1
1

2 2

subject to some linear equality constraints. The objective function is coded in the function
brownfgh.m. This example takes n = 1000. Furthermore, the browneq.mat file
contains matrices Aeq and beq that represent the linear constraints Aeq·x = beq. Aeq has
100 rows representing 100 linear constraints (so Aeq is a 100-by-1000 matrix).

Step 1: Write a file brownfgh.m that computes the objective function, the
gradient of the objective, and the sparse tridiagonal Hessian matrix.

The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective
function, you need to use optimoptions to indicate that this information is available in
brownfgh, using the GradObj and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

load browneq

The linear constraint system is 100-by-1000, has unstructured sparsity (use spy(Aeq) to
view the sparsity structure), and is not too badly ill-conditioned:

condest(Aeq*Aeq')

ans =

 2.9310e+006

Step 2: Call a nonlinear minimization routine with a starting point xstart.

fun = @brownfgh;

load browneq % Get Aeq and beq, the linear equalities

n = 1000;

6 Nonlinear algorithms and examples

6-74

xstart = -ones(n,1); xstart(2:2:n) = 1;

options = optimoptions('fmincon','GradObj','on','Hessian','user-supplied',...

 'Algorithm','trust-region-reflective');

[x,fval,exitflag,output] = ...

 fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],options);

fmincon prints the following exit message:
Local minimum possible.

fmincon stopped because the final change in function value relative to

its initial value is less than the default value of the function tolerance.

The exitflag value of 3 also indicates that the algorithm terminated because the
change in the objective function value was less than the tolerance TolFun. The final
function value is given by fval.

exitflag,fval,output

exitflag =

 3

fval =

 205.9313

output =

 iterations: 22

 funcCount: 23

 stepsize: 0.0054

 cgiterations: 30

 firstorderopt: 0.0027

 algorithm: 'trust-region-reflective'

 message: 'Local minimum possible.…'

 constrviolation: 2.2293e-13

The linear equalities are satisfied at x.

norm(Aeq*x-beq)

ans =

 1.1919e-12

 Minimization with Dense Structured Hessian, Linear Equalities

6-75

Minimization with Dense Structured Hessian, Linear Equalities

In this section...

“Hessian Multiply Function for Lower Memory” on page 6-75
“Step 1: Write a file brownvv.m that computes the objective function, the gradient, and
the sparse part of the Hessian.” on page 6-76
“Step 2: Write a function to compute Hessian-matrix products for H given a matrix Y.”
on page 6-76
“Step 3: Call a nonlinear minimization routine with a starting point and linear equality
constraints.” on page 6-77
“Preconditioning” on page 6-79

Hessian Multiply Function for Lower Memory

The fmincon interior-point and trust-region-reflective algorithms, and the
fminunc trust-region algorithm can solve problems where the Hessian is dense but
structured. For these problems, fmincon and fminunc do not compute H*Y with the
Hessian H directly, because forming H would be memory-intensive. Instead, you must
provide fmincon or fminunc with a function that, given a matrix Y and information
about H, computes W = H*Y.

In this example, the objective function is nonlinear and linear equalities exist so
fmincon is used. The description applies to the trust-region reflective algorithm; the
fminunc trust-region algorithm is similar. For the interior-point algorithm, see the
'HessMult' option in “Hessian Multiply Function” on page 14-62. The objective
function has the structure

f x f x x VV xT T() = () -ˆ ,
1

2

where V is a 1000-by-2 matrix. The Hessian of f is dense, but the Hessian of f̂ is sparse.

If the Hessian of f̂ is Ĥ , then H, the Hessian of f, is

H H VV
T

= -
ˆ .

6 Nonlinear algorithms and examples

6-76

To avoid excessive memory usage that could happen by working with H directly, the
example provides a Hessian multiply function, hmfleq1. This function, when passed a
matrix Y, uses sparse matrices Hinfo, which corresponds to Ĥ , and V to compute the
Hessian matrix product

W = H*Y = (Hinfo - V*V')*Y

In this example, the Hessian multiply function needs Ĥ and V to compute the Hessian
matrix product. V is a constant, so you can capture V in a function handle to an
anonymous function.

However, Ĥ is not a constant and must be computed at the current x. You can do this
by computing Ĥ in the objective function and returning Ĥ as Hinfo in the third output
argument. By using optimoptions to set the 'Hessian' options to 'on', fmincon
knows to get the Hinfo value from the objective function and pass it to the Hessian
multiply function hmfleq1.

Step 1: Write a file brownvv.m that computes the objective function, the
gradient, and the sparse part of the Hessian.

The example passes brownvv to fmincon as the objective function. The brownvv.m file is
long and is not included here. You can view the code with the command

type brownvv

Because brownvv computes the gradient and part of the Hessian as well as the objective
function, the example (Step 3) uses optimoptions to set the GradObj and Hessian
options to 'on'.

Step 2: Write a function to compute Hessian-matrix products for H given
a matrix Y.

Now, define a function hmfleq1 that uses Hinfo, which is computed in brownvv, and
V, which you can capture in a function handle to an anonymous function, to compute the
Hessian matrix product W where W = H*Y = (Hinfo - V*V')*Y. This function must
have the form

W = hmfleq1(Hinfo,Y)

 Minimization with Dense Structured Hessian, Linear Equalities

6-77

The first argument must be the same as the third argument returned by the objective
function brownvv. The second argument to the Hessian multiply function is the matrix Y
(of W = H*Y).

Because fmincon expects the second argument Y to be used to form the Hessian matrix
product, Y is always a matrix with n rows where n is the number of dimensions in the
problem. The number of columns in Y can vary. Finally, you can use a function handle to
an anonymous function to capture V, so V can be the third argument to 'hmfleqq'.

function W = hmfleq1(Hinfo,Y,V);

%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.

% W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y

% where Hinfo is a sparse matrix computed by BROWNVV

% and V is a 2 column matrix.

W = Hinfo*Y - V*(V'*Y);

Note The function hmfleq1 is available in the optimdemos folder as hmfleq1.m.

Step 3: Call a nonlinear minimization routine with a starting point and
linear equality constraints.

Load the problem parameter, V, and the sparse equality constraint matrices, Aeq and
beq, from fleq1.mat, which is available in the optimdemos folder. Use optimoptions
to set the GradObj and Hessian options to 'on' and to set the HessMult option to a
function handle that points to hmfleq1. Call fmincon with objective function brownvv
and with V as an additional parameter:

function [fval, exitflag, output, x] = runfleq1

% RUNFLEQ1 demonstrates 'HessMult' option for FMINCON with linear

% equalities.

problem = load('fleq1'); % Get V, Aeq, beq

V = problem.V; Aeq = problem.Aeq; beq = problem.beq;

n = 1000; % problem dimension

xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1); % starting point

options = optimoptions(@fmincon,'Algorithm','trust-region-reflective','GradObj','on', ...

 'Hessian','user-supplied','HessMult',@(Hinfo,Y)hmfleq1(Hinfo,Y,V),'Display','iter', ...

 'TolFun',1e-9);

[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),xstart,[],[],Aeq,beq,[],[], ...

 [],options);

6 Nonlinear algorithms and examples

6-78

To run the preceding code, enter

[fval,exitflag,output,x] = runfleq1;

Because the iterative display was set using optimoptions, this command generates the
following iterative display:
 Norm of First-order

 Iteration f(x) step optimality CG-iterations

 0 2297.63 1.41e+03

 1 1084.59 6.3903 578 1

 2 1084.59 100 578 3

 3 1084.59 25 578 0

 4 1084.59 6.25 578 0

 5 1047.61 1.5625 240 0

 6 761.592 3.125 62.4 2

 7 761.592 6.25 62.4 4

 8 746.478 1.5625 163 0

 9 546.578 3.125 84.1 2

 10 274.311 6.25 26.9 2

 11 55.6193 11.6597 40 2

 12 55.6193 25 40 3

 13 22.2964 6.25 26.3 0

 14 -49.516 6.25 78 1

 15 -93.2772 1.5625 68 1

 16 -207.204 3.125 86.5 1

 17 -434.162 6.25 70.7 1

 18 -681.359 6.25 43.7 2

 19 -681.359 6.25 43.7 4

 20 -698.041 1.5625 191 0

 21 -723.959 3.125 256 7

 22 -751.33 0.78125 154 3

 23 -793.974 1.5625 24.4 3

 24 -820.831 2.51937 6.11 3

 25 -823.069 0.562132 2.87 3

 26 -823.237 0.196753 0.486 3

 27 -823.245 0.0621202 0.386 3

 28 -823.246 0.0199951 0.11 6

 29 -823.246 0.00731333 0.0404 7

 30 -823.246 0.00505883 0.0185 8

 31 -823.246 0.00126471 0.00268 9

 32 -823.246 0.00149326 0.00521 9

 33 -823.246 0.000373314 0.00091 9

Local minimum possible.

fmincon stopped because the final change in function value relative to

its initial value is less than the selected value of the function tolerance.

Convergence is rapid for a problem of this size with the PCG iteration cost increasing
modestly as the optimization progresses. Feasibility of the equality constraints is
maintained at the solution.

problem = load('fleq1'); % Get V, Aeq, beq

V = problem.V; Aeq = problem.Aeq; beq = problem.beq;

norm(Aeq*x-beq,inf)

 Minimization with Dense Structured Hessian, Linear Equalities

6-79

ans =

 2.3093e-14

Preconditioning

In this example, fmincon cannot use H to compute a preconditioner because H only exists
implicitly. Instead of H, fmincon uses Hinfo, the third argument returned by brownvv,
to compute a preconditioner. Hinfo is a good choice because it is the same size as H and
approximates H to some degree. If Hinfo were not the same size as H, fmincon would
compute a preconditioner based on some diagonal scaling matrices determined from the
algorithm. Typically, this would not perform as well.

6 Nonlinear algorithms and examples

6-80

Symbolic Math Toolbox Calculates Gradients and Hessians

If you have a Symbolic Math Toolbox license, you can easily calculate analytic gradients
and Hessians for objective and constraint functions. There are two relevant Symbolic
Math Toolbox functions:

• jacobian generates the gradient of a scalar function, and generates a matrix of the
partial derivatives of a vector function. So, for example, you can obtain the Hessian
matrix, the second derivatives of the objective function, by applying jacobian to
the gradient. Part of this example shows how to use jacobian to generate symbolic
gradients and Hessians of objective and constraint functions.

• matlabFunction generates either an anonymous function or a file that calculates
the values of a symbolic expression. This example shows how to use matlabFunction
to generate files that evaluate the objective and constraint function and their
derivatives at arbitrary points.

Consider the electrostatics problem of placing 10 electrons in a conducting body. The
electrons will arrange themselves so as to minimize their total potential energy, subject
to the constraint of lying inside the body. It is well known that all the electrons will be
on the boundary of the body at a minimum. The electrons are indistinguishable, so there
is no unique minimum for this problem (permuting the electrons in one solution gives
another valid solution). This example was inspired by Dolan, Moré, and Munson [58].

This example is a conducting body defined by the following inequalities:

z x y£ - -

x y z
2 2 2

1 1+ + +() £ .

This body looks like a pyramid on a sphere.

 Symbolic Math Toolbox Calculates Gradients and Hessians

6-81

There is a slight gap between the upper and lower surfaces of the figure. This is an
artifact of the general plotting routine used to create the figure. This routine erases any
rectangular patch on one surface that touches the other surface.

The syntax and structures of the two sets of toolbox functions differ. In particular,
symbolic variables are real or complex scalars, but Optimization Toolbox functions
pass vector arguments. So there are several steps to take to generate symbolically the
objective function, constraints, and all their requisite derivatives, in a form suitable for
the interior-point algorithm of fmincon:

1 “Create the Variables” on page 6-82
2 “Include the Linear Constraints” on page 6-83
3 “Create the Nonlinear Constraints, Their Gradients and Hessians” on page 6-85

6 Nonlinear algorithms and examples

6-82

4 “Create the Objective Function, Its Gradient and Hessian” on page 6-85
5 “Create the Objective Function File” on page 6-86
6 “Create the Constraint Function File” on page 6-87
7 “Generate the Hessian Files” on page 6-87
8 “Run the Optimization” on page 6-88
9 “Clear the Symbolic Variable Assumptions” on page 6-92

To see the efficiency in using gradients and Hessians, see “Compare to Optimization
Without Gradients and Hessians” on page 6-91.

Create the Variables

Generate a symbolic vector x as a 30-by-1 vector composed of real symbolic variables
xij, i between 1 and 10, and j between 1 and 3. These variables represent the three
coordinates of electron i: xi1 corresponds to the x coordinate, xi2 corresponds to the y
coordinate, and xi3 corresponds to the z coordinate.

x = cell(3, 10);

for i = 1:10

 for j = 1:3

 x{j,i} = sprintf('x%d%d',i,j);

 end

end

x = x(:); % now x is a 30-by-1 vector

x = sym(x, 'real');

The vector x is:

x

x =

 x11

 x12

 x13

 x21

 x22

 x23

 x31

 x32

 x33

 x41

 Symbolic Math Toolbox Calculates Gradients and Hessians

6-83

 x42

 x43

 x51

 x52

 x53

 x61

 x62

 x63

 x71

 x72

 x73

 x81

 x82

 x83

 x91

 x92

 x93

 x101

 x102

 x103

Include the Linear Constraints

Write the linear constraints in Equation 6-60,
z ≤ –|x| – |y|,

as a set of four linear inequalities for each electron:
xi3 – xi1 – xi2 ≤ 0
xi3 – xi1 + xi2 ≤ 0
xi3 + xi1 – xi2 ≤ 0
xi3 + xi1 + xi2 ≤ 0

Therefore there are a total of 40 linear inequalities for this problem.

Write the inequalities in a structured way:

B = [1,1,1;-1,1,1;1,-1,1;-1,-1,1];

A = zeros(40,30);

for i=1:10

 A(4*i-3:4*i,3*i-2:3*i) = B;

end

6 Nonlinear algorithms and examples

6-84

b = zeros(40,1);

You can see that A*x ≤ b represents the inequalities:

A*x

ans =

 x11 + x12 + x13

 x12 - x11 + x13

 x11 - x12 + x13

 x13 - x12 - x11

 x21 + x22 + x23

 x22 - x21 + x23

 x21 - x22 + x23

 x23 - x22 - x21

 x31 + x32 + x33

 x32 - x31 + x33

 x31 - x32 + x33

 x33 - x32 - x31

 x41 + x42 + x43

 x42 - x41 + x43

 x41 - x42 + x43

 x43 - x42 - x41

 x51 + x52 + x53

 x52 - x51 + x53

 x51 - x52 + x53

 x53 - x52 - x51

 x61 + x62 + x63

 x62 - x61 + x63

 x61 - x62 + x63

 x63 - x62 - x61

 x71 + x72 + x73

 x72 - x71 + x73

 x71 - x72 + x73

 x73 - x72 - x71

 x81 + x82 + x83

 x82 - x81 + x83

 x81 - x82 + x83

 x83 - x82 - x81

 x91 + x92 + x93

 x92 - x91 + x93

 x91 - x92 + x93

 x93 - x92 - x91

 x101 + x102 + x103

 x102 - x101 + x103

 Symbolic Math Toolbox Calculates Gradients and Hessians

6-85

 x101 - x102 + x103

 x103 - x102 - x101

Create the Nonlinear Constraints, Their Gradients and Hessians

The nonlinear constraints in Equation 6-61 ,

x y z
2 2 2

1 1+ + +() £ ,

are also structured. Generate the constraints, their gradients, and Hessians as follows:

c = sym(zeros(1,10));

i = 1:10;

c = (x(3*i-2).^2 + x(3*i-1).^2 + (x(3*i)+1).^2 - 1).';

gradc = jacobian(c,x).'; % .' performs transpose

hessc = cell(1, 10);

for i = 1:10

 hessc{i} = jacobian(gradc(:,i),x);

end

The constraint vector c is a row vector, and the gradient of c(i) is represented in the
ith column of the matrix gradc. This is the correct form, as described in “Nonlinear
Constraints” on page 2-35.

The Hessian matrices, hessc{1}...hessc{10}, are square and symmetric. It is
better to store them in a cell array, as is done here, than in separate variables such as
hessc1, ..., hesssc10.

Use the .' syntax to transpose. The ' syntax means conjugate transpose, which has
different symbolic derivatives.

Create the Objective Function, Its Gradient and Hessian

The objective function, potential energy, is the sum of the inverses of the distances
between each electron pair:

energy =
-<

Â
1

x xi ji j

.

6 Nonlinear algorithms and examples

6-86

The distance is the square root of the sum of the squares of the differences in the
components of the vectors.

Calculate the energy, its gradient, and its Hessian as follows:

energy = sym(0);

for i = 1:3:25

 for j = i+3:3:28

 dist = x(i:i+2) - x(j:j+2);

 energy = energy + 1/sqrt(dist.'*dist);

 end

end

gradenergy = jacobian(energy,x).';

hessenergy = jacobian(gradenergy,x);

Create the Objective Function File

The objective function should have two outputs, energy and gradenergy. Put both
functions in one vector when calling matlabFunction to reduce the number of
subexpressions that matlabFunction generates, and to return the gradient only when
the calling function (fmincon in this case) requests both outputs. This example shows
placing the resulting files in your current folder. Of course, you can place them anywhere
you like, as long as the folder is on the MATLAB path.

currdir = [pwd filesep]; % You may need to use currdir = pwd

filename = [currdir,'demoenergy.m'];

matlabFunction(energy,gradenergy,'file',filename,'vars',{x});

This syntax causes matlabFunction to return energy as the first output, and
gradenergy as the second. It also takes a single input vector {x} instead of a list of
inputs x11, ..., x103.

The resulting file demoenergy.m contains, in part, the following lines or similar ones:

function [energy,gradenergy] = demoenergy(in1)

%DEMOENERGY

% [ENERGY,GRADENERGY] = DEMOENERGY(IN1)

...

x101 = in1(28,:);

...

energy = 1./t140.^(1./2) + ...;

 Symbolic Math Toolbox Calculates Gradients and Hessians

6-87

if nargout > 1

 ...

 gradenergy = [(t174.*(t185 - 2.*x11))./2 - ...];

end

This function has the correct form for an objective function with a gradient; see “Writing
Scalar Objective Functions” on page 2-18.

Create the Constraint Function File

Generate the nonlinear constraint function, and put it in the correct format.

filename = [currdir,'democonstr.m'];

matlabFunction(c,[],gradc,[],'file',filename,'vars',{x},...

 'outputs',{'c','ceq','gradc','gradceq'});

The resulting file democonstr.m contains, in part, the following lines or similar ones:

function [c,ceq,gradc,gradceq] = democonstr(in1)

%DEMOCONSTR

% [C,CEQ,GRADC,GRADCEQ] = DEMOCONSTR(IN1)

...

x101 = in1(28,:);

...

c = [t417.^2 + ...];

if nargout > 1

 ceq = [];

end

if nargout > 2

 gradc = [2.*x11,...];

end

if nargout > 3

 gradceq = [];

end

This function has the correct form for a constraint function with a gradient; see
“Nonlinear Constraints” on page 2-35.

Generate the Hessian Files

To generate the Hessian of the Lagrangian for the problem, first generate files for the
energy Hessian and for the constraint Hessians.

6 Nonlinear algorithms and examples

6-88

The Hessian of the objective function, hessenergy, is a very large symbolic expression,
containing over 150,000 symbols, as evaluating size(char(hessenergy)) shows. So it
takes a substantial amount of time to run matlabFunction(hessenergy).

To generate a file hessenergy.m, run the following two lines:

filename = [currdir,'hessenergy.m'];

matlabFunction(hessenergy,'file',filename,'vars',{x});

In contrast, the Hessians of the constraint functions are small, and fast to compute:

for i = 1:10

 ii = num2str(i);

 thename = ['hessc',ii];

 filename = [currdir,thename,'.m'];

 matlabFunction(hessc{i},'file',filename,'vars',{x});

end

After generating all the files for the objective and constraints, put them together with the
appropriate Lagrange multipliers in a file hessfinal.m as follows:
function H = hessfinal(X,lambda)

%

% Call the function hessenergy to start

H = hessenergy(X);

% Add the Lagrange multipliers * the constraint Hessians

H = H + hessc1(X) * lambda.ineqnonlin(1);

H = H + hessc2(X) * lambda.ineqnonlin(2);

H = H + hessc3(X) * lambda.ineqnonlin(3);

H = H + hessc4(X) * lambda.ineqnonlin(4);

H = H + hessc5(X) * lambda.ineqnonlin(5);

H = H + hessc6(X) * lambda.ineqnonlin(6);

H = H + hessc7(X) * lambda.ineqnonlin(7);

H = H + hessc8(X) * lambda.ineqnonlin(8);

H = H + hessc9(X) * lambda.ineqnonlin(9);

H = H + hessc10(X) * lambda.ineqnonlin(10);

Run the Optimization

Start the optimization with the electrons distributed randomly on a sphere of radius 1/2
centered at [0,0,–1]:

rng default % for reproducibility

Xinitial = randn(3,10); % columns are normal 3-D vectors

for j=1:10

 Xinitial(:,j) = Xinitial(:,j)/norm(Xinitial(:,j))/2;

 % this normalizes to a 1/2-sphere

 Symbolic Math Toolbox Calculates Gradients and Hessians

6-89

end

Xinitial(3,:) = Xinitial(3,:) - 1; % center at [0,0,-1]

Xinitial = Xinitial(:); % Convert to a column vector

Set the options to use the interior-point algorithm, and to use gradients and the Hessian:

options = optimoptions(@fmincon,'Algorithm','interior-point','GradObj','on',...

 'GradConstr','on','Hessian','user-supplied',...

 'HessFcn',@hessfinal,'Display','final');

Call fmincon:

[xfinal fval exitflag output] = fmincon(@demoenergy,Xinitial,...

 A,b,[],[],[],[],@democonstr,options)

The output is as follows:
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

xfinal =

 -0.0317

 0.0317

 -1.9990

 0.6356

 -0.6356

 -1.4381

 0.0000

 -0.0000

 -0.0000

 0.0000

 -1.0000

 -1.0000

 1.0000

 -0.0000

 -1.0000

 -1.0000

 -0.0000

 -1.0000

 0.6689

 0.6644

 -1.3333

 -0.6667

 0.6667

 -1.3333

 0.0000

 1.0000

 -1.0000

 -0.6644

 -0.6689

 -1.3333

fval =

6 Nonlinear algorithms and examples

6-90

 34.1365

exitflag =

 1

output =

 iterations: 19

 funcCount: 28

 constrviolation: 0

 stepsize: 4.0372e-05

 algorithm: 'interior-point'

 firstorderopt: 4.0015e-07

 cgiterations: 55

 message: 'Local minimum found that satisfies the constraints.…'

Even though the initial positions of the electrons were random, the final positions are
nearly symmetric:

 Symbolic Math Toolbox Calculates Gradients and Hessians

6-91

Compare to Optimization Without Gradients and Hessians

The use of gradients and Hessians makes the optimization run faster and more
accurately. To compare with the same optimization using no gradient or Hessian
information, set the options not to use gradients and Hessians:

options = optimoptions(@fmincon,'Algorithm','interior-point',...

 'Display','final');

[xfinal2 fval2 exitflag2 output2] = fmincon(@demoenergy,Xinitial,...

 A,b,[],[],[],[],@democonstr,options)

The output shows that fmincon found an equivalent minimum, but took more iterations
and many more function evaluations to do so:
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

xfinal2 =

 0.0000

 1.0000

 -1.0000

 0.6689

 -0.6644

 -1.3334

 -0.6644

 0.6689

 -1.3334

 0.0000

 -1.0000

 -1.0000

 0.6357

 0.6357

 -1.4380

 -0.0317

 -0.0317

 -1.9990

 1.0000

 0.0000

 -1.0000

 -1.0000

 0.0000

 -1.0000

 0.0000

 0.0000

 -0.0000

 -0.6667

 -0.6667

 -1.3334

fval2 =

 34.1365

exitflag2 =

 1

6 Nonlinear algorithms and examples

6-92

output2 =

 iterations: 77

 funcCount: 2431

 constrviolation: 0

 stepsize: 6.0588e-07

 algorithm: 'interior-point'

 firstorderopt: 2.9894e-06

 cgiterations: 0

 message: 'Local minimum found that satisfies the constraints.…'

In this run the number of function evaluations (in output2.funcCount) is 2431,
compared to 28 (in output.funcCount) when using gradients and Hessian.

Clear the Symbolic Variable Assumptions

The symbolic variables in this example have the assumption, in the symbolic engine
workspace, that they are real. To clear this assumption from the symbolic engine
workspace, it is not sufficient to delete the variables. You must clear the variables using
the syntax

syms x11 x12 x13 clear

or reset the symbolic engine using the command

reset(symengine)

After resetting the symbolic engine you should clear all symbolic variables from the
MATLAB workspace with the clear command, or clear variable_list.

 One-Dimensional Semi-Infinite Constraints

6-93

One-Dimensional Semi-Infinite Constraints

Find values of x that minimize
f(x) = (x1 – 0.5)2 + (x2– 0.5)2 + (x3– 0.5)2

where

K x w w x w x w w x x

K

1 1 1 1 1 2 1
2

1 3 3

1

1000
50 1, sin cos sin ,() = () () - -() - () - £

22 2 2 2 2 1 2
2

2 3 3

1

1000
50 1x w w x w x w w x x, sin cos sin ,() = () () - -() - () - £

for all values of w1 and w2 over the ranges
1 ≤ w1 ≤ 100,
1 ≤ w2 ≤ 100.

Note that the semi-infinite constraints are one-dimensional, that is, vectors. Because the
constraints must be in the form Ki(x,wi) ≤ 0, you need to compute the constraints as

K x w w x w x w w x x1 1 1 1 1 2 1
2

1 3 3

1

1000
50 1 0, sin cos sin() = () () - -() - () - - £ ,,

, sin cos sinK x w w x w x w w x x2 2 2 2 2 1 2
2

2 3 3

1

1000
50 1() = () () - -() - () - - ££ 0.

First, write a file that computes the objective function.

function f = myfun(x,s)

% Objective function

f = sum((x-0.5).^2);

Second, write a file mycon.m that computes the nonlinear equality and inequality
constraints and the semi-infinite constraints.

function [c,ceq,K1,K2,s] = mycon(X,s)

% Initial sampling interval

if isnan(s(1,1)),

 s = [0.2 0; 0.2 0];

end

% Sample set

w1 = 1:s(1,1):100;

6 Nonlinear algorithms and examples

6-94

w2 = 1:s(2,1):100;

% Semi-infinite constraints

K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...

 sin(w1*X(3))-X(3)-1;

K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...

 sin(w2*X(3))-X(3)-1;

% No finite nonlinear constraints

c = []; ceq=[];

% Plot a graph of semi-infinite constraints

plot(w1,K1,'-',w2,K2,':')

title('Semi-infinite constraints')

drawnow

Then, invoke an optimization routine.

x0 = [0.5; 0.2; 0.3]; % Starting guess

[x,fval] = fseminf(@myfun,x0,2,@mycon);

After eight iterations, the solution is

x

x =

 0.6675

 0.3012

 0.4022

The function value and the maximum values of the semi-infinite constraints at the
solution x are

fval

fval =

 0.0771

[c,ceq,K1,K2] = mycon(x,NaN); % Initial sampling interval

max(K1)

ans =

 -0.0077

max(K2)

ans =

 -0.0812

A plot of the semi-infinite constraints is produced.

 One-Dimensional Semi-Infinite Constraints

6-95

This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside mycon.m slows down the computation. Remove this line to
improve the speed.

6 Nonlinear algorithms and examples

6-96

Two-Dimensional Semi-Infinite Constraint

Find values of x that minimize
f(x) = (x1 – 0.2)2 + (x2– 0.2)2 + (x3– 0.2)2,

where

K x w w x w x w w x x1 1 1 2 2 1
2

1 3 3

1

1000
50, sin cos sin ...() = () () - -() - () - +

 sin cos sinw x w x w w x2 2 1 1 2
2

2 3

1

1000
50() () - -() - ()) - £x3 1 5. ,

for all values of w1 and w2 over the ranges
1 ≤ w1 ≤ 100,
1 ≤ w2 ≤ 100,

starting at the point x = [0.25,0.25,0.25].

Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write a file that computes the objective function.

function f = myfun(x,s)

% Objective function

f = sum((x-0.2).^2);

Second, write a file for the constraints, called mycon.m. Include code to draw the surface
plot of the semi-infinite constraint each time mycon is called. This enables you to see how
the constraint changes as X is being minimized.

function [c,ceq,K1,s] = mycon(X,s)

% Initial sampling interval

if isnan(s(1,1)),

 s = [2 2];

end

% Sampling set

w1x = 1:s(1,1):100;

w1y = 1:s(1,2):100;

[wx,wy] = meshgrid(w1x,w1y);

 Two-Dimensional Semi-Infinite Constraint

6-97

% Semi-infinite constraint

K1 = sin(wx*X(1)).*cos(wx*X(2))-1/1000*(wx-50).^2 -...

 sin(wx*X(3))-X(3)+sin(wy*X(2)).*cos(wx*X(1))-...

 1/1000*(wy-50).^2-sin(wy*X(3))-X(3)-1.5;

% No finite nonlinear constraints

c = []; ceq=[];

% Mesh plot

m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');

camlight headlight

title('Semi-infinite constraint')

drawnow

Next, invoke an optimization routine.

x0 = [0.25, 0.25, 0.25]; % Starting guess

[x,fval] = fseminf(@myfun,x0,1,@mycon)

After nine iterations, the solution is

x

x =

 0.2522 0.1714 0.1936

and the function value at the solution is

fval

fval =

 0.0036

The goal was to minimize the objective f(x) such that the semi-infinite constraint satisfied
K1(x,w) ≤ 1.5. Evaluating mycon at the solution x and looking at the maximum element of
the matrix K1 shows the constraint is easily satisfied.

[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5

max(max(K1))

ans =

 -0.0332

This call to mycon produces the following surf plot, which shows the semi-infinite
constraint at x.

6 Nonlinear algorithms and examples

6-98

7

Multiobjective Algorithms and
Examples

• “Multiobjective Optimization Algorithms” on page 7-2
• “Using fminimax with a Simulink Model” on page 7-7
• “Signal Processing Using fgoalattain” on page 7-10
• “Generate and Plot a Pareto Front” on page 7-13

7 Multiobjective Algorithms and Examples

7-2

Multiobjective Optimization Algorithms

In this section...

“Multiobjective Optimization Definition” on page 7-2
“Algorithms” on page 7-3

Multiobjective Optimization Definition

There are two Optimization Toolbox multiobjective solvers: fgoalattain and
fminimax.

• fgoalattain addresses the problem of reducing a set of nonlinear functions Fi(x)
below a set of goals F*i. Since there are several functions Fi(x), it is not always clear
what it means to solve this problem, especially when you cannot achieve all the goals
simultaneously. Therefore, the problem is reformulated to one that is always well-
defined.

The unscaled goal attainment problem is to minimize the maximum of Fi(x) – F*i.

There is a useful generalization of the unscaled problem. Given a set of positive
weights wi, the goal attainment problem tries to find x to minimize the maximum of

F x F

w

i i

i

()
.

*
-

This minimization is supposed to be accomplished while satisfying all types of
constraints: c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

If you set all weights equal to 1 (or any other positive constant), the goal attainment
problem is the same as the unscaled goal attainment problem. If the F*i are positive,
and you set all weights as wi = F*i, the goal attainment problem becomes minimizing
the relative difference between the functions Fi(x) and the goals F*i.

In other words, the goal attainment problem is to minimize a slack variable γ, defined
as the maximum over i of the expressions in Equation 7-1. This implies the expression
that is the formal statement of the goal attainment problem:

 Multiobjective Optimization Algorithms

7-3

min
,x g

g

such that F(x) – w·γ ≤ F*, c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.
• fminimax addresses the problem of minimizing the maximum of a set of nonlinear

functions, subject to all types of constraints:

minmax ()
x i

i
F x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

Clearly, this problem is a special case of the unscaled goal attainment problem, with
F*i = 0 and wi = 1.

Algorithms

Goal Attainment Method

This section describes the goal attainment method of Gembicki [16]. This method uses

a set of design goals, F F F F
m

* * * *, ,...,= { }1 2 , associated with a set of objectives, F(x) =

{F1(x),F2(x),...,Fm(x)}. The problem formulation allows the objectives to be under- or
overachieved, enabling the designer to be relatively imprecise about the initial design
goals. The relative degree of under- or overachievement of the goals is controlled by
a vector of weighting coefficients, w = {w1,w2,...,wm}, and is expressed as a standard
optimization problem using the formulation

minimize
 g

g
Œ¬ Œ, x W

such that F x w F i m
i i i
() , ,..., .*

- £ =g 1

The term wiγ introduces an element of slackness into the problem, which otherwise
imposes that the goals be rigidly met. The weighting vector, w, enables the designer to
express a measure of the relative tradeoffs between the objectives. For instance, setting
the weighting vector w equal to the initial goals indicates that the same percentage
under- or overachievement of the goals, F*, is achieved. You can incorporate hard

7 Multiobjective Algorithms and Examples

7-4

constraints into the design by setting a particular weighting factor to zero (i.e., wi = 0).
The goal attainment method provides a convenient intuitive interpretation of the design
problem, which is solvable using standard optimization procedures. Illustrative examples
of the use of the goal attainment method in control system design can be found in
Fleming ([10] and [11]).

The goal attainment method is represented geometrically in the figure below in two
dimensions.

Figure 7-1. Geometrical Representation of the Goal Attainment Method

Specification of the goals, F F1 2
* *,{ } , defines the goal point, P. The weighting vector

defines the direction of search from P to the feasible function space, Λ(γ). During the
optimization γ is varied, which changes the size of the feasible region. The constraint
boundaries converge to the unique solution point F1s, F2s.

Algorithm Improvements for the Goal Attainment Method

The goal attainment method has the advantage that it can be posed as a nonlinear
programming problem. Characteristics of the problem can also be exploited in a
nonlinear programming algorithm. In sequential quadratic programming (SQP), the
choice of merit function for the line search is not easy because, in many cases, it is
difficult to “define” the relative importance between improving the objective function and
reducing constraint violations. This has resulted in a number of different schemes for

 Multiobjective Optimization Algorithms

7-5

constructing the merit function (see, for example, Schittkowski [36]). In goal attainment
programming there might be a more appropriate merit function, which you can achieve
by posing Equation 7-2 as the minimax problem

minimize
x i

i
nŒ¬

{ }max ,L

where

Li
i i

i

F x F

w
i m=

-

=

()
, , ..., .

*

 1

Following the argument of Brayton et al. [2] for minimax optimization using SQP, using
the merit function of Equation 6-46 for the goal attainment problem of Equation 7-3 gives

y g g g(,) max , () .*
x r F x w F

i i i i

i

m

= + ◊ - -{ }
=
Â 0

1

When the merit function of Equation 7-4 is used as the basis of a line search procedure,
then, although ψ(x,γ) might decrease for a step in a given search direction, the function
max Λi might paradoxically increase. This is accepting a degradation in the worst case
objective. Since the worst case objective is responsible for the value of the objective
function γ, this is accepting a step that ultimately increases the objective function to
be minimized. Conversely, ψ(x,γ) might increase when max Λi decreases, implying a
rejection of a step that improves the worst case objective.

Following the lines of Brayton et al. [2], a solution is therefore to set ψ(x) equal to the
worst case objective, i.e.,

y () max .x
i

i
= L

A problem in the goal attainment method is that it is common to use a weighting
coefficient equal to 0 to incorporate hard constraints. The merit function of Equation 7-5
then becomes infinite for arbitrary violations of the constraints.

To overcome this problem while still retaining the features of Equation 7-5, the merit
function is combined with that of Equation 6-47, giving the following:

7 Multiobjective Algorithms and Examples

7-6

y
g

()
max , ()

max , ,...,

*

x

r F x w F w

i m

i i i i i

i
i

=
◊ - -{ } =

=

0 0

1

if

 otherwL iise.

Ï

Ì
Ô

Ó
Ô=

Â
i

m

1

Another feature that can be exploited in SQP is the objective function γ. From the KKT
equations it can be shown that the approximation to the Hessian of the Lagrangian,
H, should have zeros in the rows and columns associated with the variable γ. However,
this property does not appear if H is initialized as the identity matrix. H is therefore
initialized and maintained to have zeros in the rows and columns associated with γ.

These changes make the Hessian, H, indefinite. Therefore H is set to have zeros in the
rows and columns associated with γ, except for the diagonal element, which is set to
a small positive number (e.g., 1e-10). This allows use of the fast converging positive
definite QP method described in “Quadratic Programming Solution” on page 6-31.

The preceding modifications have been implemented in fgoalattain and have been
found to make the method more robust. However, because of the rapid convergence of
the SQP method, the requirement that the merit function strictly decrease sometimes
requires more function evaluations than an implementation of SQP using the merit
function of Equation 6-46.

Minimizing the Maximum Objective

fminimax uses a goal attainment method. It takes goals of 0, and weights of 1. With this
formulation, the goal attainment problem becomes

minmax
()

min max (),
i x

i i

i i x
i

f x goal

weight
f x

-Ê

Ë
Á

ˆ

¯
˜ =

which is the minimax problem.

Parenthetically, you might expect fminimax to turn the multiobjective function into a
single objective. The function
f(x) = max(F1(x),...Fj(x))
is a single objective function to minimize. However, it is not differentiable, and
Optimization Toolbox objectives are required to be smooth. Therefore the minimax
problem is formulated as a smooth goal attainment problem.

 Using fminimax with a Simulink Model

7-7

Using fminimax with a Simulink Model

Another approach to optimizing the control parameters in the Simulink model shown
in Plant with Actuator Saturation is to use the fminimax function. In this case, rather
than minimizing the error between the output and the input signal, you minimize the
maximum value of the output at any time t between 0 and 100.

The code for this example, shown below, is contained in the function runtrackmm, in
which the objective function is simply the output yout returned by the sim command.
But minimizing the maximum output at all time steps might force the output to be
far below unity for some time steps. To keep the output above 0.95 after the first 20
seconds, the constraint function trackmmcon contains the constraint yout >= 0.95
from t=20 to t=100. Because constraints must be in the form g ≤ 0, the constraint in
the function is g = -yout(20:100)+.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from
the current PID values. To avoid calling the simulation twice, runtrackmm has nested
functions so that the value of yout is shared between the objective and constraint
functions. The simulation is called only when the current point changes.

The following is the code for runtrackmm:

function [Kp, Ki, Kd] = runtrackmm

optsim % initialize Simulink(R)

pid0 = [0.63 0.0504 1.9688];

% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON

a1 = 3; a2 = 43; % Initialize plant variables in model

yout = []; % Give yout an initial value

pold = []; % tracks last pid

options = optimoptions('fminimax','Display','iter',...

 'TolX',0.001,'TolFun',0.001);

pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...

 @trackmmcon,options);

Kp = pid(1); Ki = pid(2); Kd = pid(3);

 function F = trackmmobj(pid)

 % Track the output of optsim to a signal of 1.

 % Variables a1 and a2 are shared with RUNTRACKMM.

 % Variable yout is shared with RUNTRACKMM and

 % RUNTRACKMMCON.

 updateIfNeeded(pid)

7 Multiobjective Algorithms and Examples

7-8

 F = yout;

 end

 function [c,ceq] = trackmmcon(pid)

 % Track the output of optsim to a signal of 1.

 % Variable yout is shared with RUNTRACKMM and

 % TRACKMMOBJ

 updateIfNeeded(pid)

 c = -yout(20:100)+.95;

 ceq=[];

 end

 function updateIfNeeded(pid)

 if ~isequal(pid,pold) % compute only if needed

 Kp = pid(1);

 Ki = pid(2);

 Kd = pid(3);

 myobj = sim('optsim','SrcWorkspace','Current');

 yout = myobj.get('yout');

 pold = pid;

 end

 end

end

Copy the code for runtrackmm to a file named runtrackmm.m, placed in a folder on your
MATLAB path.

When you run the code, it returns the following results:
[Kp,Ki,Kd] = runtrackmm

Done initializing optsim.

 Objective Max Line search Directional

 Iter F-count value constraint steplength derivative Procedure

 0 5 0 1.11982

 1 11 1.184 0.07978 1 0.482

 2 17 1.012 0.04285 1 -0.236

 3 23 0.9995 0.007058 1 -0.0186 Hessian modified twice

 4 29 0.9997 9.705e-07 1 0.00716 Hessian modified

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than

 Using fminimax with a Simulink Model

7-9

twice the selected value of the step size tolerance and constraints are

satisfied to within the default value of the constraint tolerance.

Kp =

 0.5910

Ki =

 0.0606

Kd =

 5.5383

The last value in the Objective value column of the output shows that the maximum
value for all the time steps is 0.9997. The closed loop response with this result is shown
in the figure Closed-Loop Response Using fminimax.

This solution differs from the solution obtained in “lsqnonlin with a Simulink Model” on
page 10-11 because you are solving different problem formulations.

Closed-Loop Response Using fminimax

7 Multiobjective Algorithms and Examples

7-10

Signal Processing Using fgoalattain

Consider designing a linear-phase Finite Impulse Response (FIR) filter. The problem is to
design a lowpass filter with magnitude one at all frequencies between 0 and 0.1 Hz and
magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by

H f h n e

A f e

A f a n fn

j fn

n

M

j fM

n

M

() ()

() ,

() () cos()

=

=

=

-

=

-

=

-

Â
2

0

2

2

0

2

p

p

p

11

Â ,

where A(f) is the magnitude of the frequency response. One solution is to apply a goal
attainment method to the magnitude of the frequency response. Given a function that
computes the magnitude, fgoalattain will attempt to vary the magnitude coefficients
a(n) until the magnitude response matches the desired response within some tolerance.
The function that computes the magnitude response is given in filtmin.m. This
function uses a, the magnitude function coefficients, and w, the discretization of the
frequency domain of interest.

To set up a goal attainment problem, you must specify the goal and weights for the
problem. For frequencies between 0 and 0.1, the goal is one. For frequencies between 0.15
and 0.5, the goal is zero. Frequencies between 0.1 and 0.15 are not specified, so no goals
or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain. The length
of goal is the same as the length returned by the function filtmin. So that the goals
are equally satisfied, usually weight would be set to abs(goal). However, since some
of the goals are zero, the effect of using weight=abs(goal) will force the objectives
with weight 0 to be satisfied as hard constraints, and the objectives with weight 1
possibly to be underattained (see “Goal Attainment Method” on page 7-3). Because all the
goals are close in magnitude, using a weight of unity for all goals will give them equal
priority. (Using abs(goal) for the weights is more important when the magnitude of
goal differs more significantly.) Also, setting

options = optimoptions('fgoalattain','GoalsExactAchieve',length(goal));

 Signal Processing Using fgoalattain

7-11

specifies that each objective should be as near as possible to its goal value (neither
greater nor less than).

Step 1: Write a file filtmin.m

function y = filtmin(a,w)

n = length(a);

y = cos(w'*(0:n-1)*2*pi)*a ;

Step 2: Invoke optimization routine

% Plot with initial coefficients

a0 = ones(15,1);

incr = 50;

w = linspace(0,0.5,incr);

y0 = filtmin(a0,w);

clf, plot(w,y0,'-.b');

drawnow;

% Set up the goal attainment problem

w1 = linspace(0,0.1,incr) ;

w2 = linspace(0.15,0.5,incr);

w0 = [w1 w2];

goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];

weight = ones(size(goal));

% Call fgoalattain

options = optimoptions('fgoalattain','GoalsExactAchieve',length(goal));

[a,fval,attainfactor,exitflag]=fgoalattain(@(x)filtmin(x,w0),...

 a0,goal,weight,[],[],[],[],[],[],[],options);

% Plot with the optimized (final) coefficients

y = filtmin(a,w);

hold on, plot(w,y,'r')

axis([0 0.5 -3 3])

xlabel('Frequency (Hz)')

ylabel('Magnitude Response (dB)')

legend('initial', 'final')

grid on

Compare the magnitude response computed with the initial coefficients and the final
coefficients (Magnitude Response with Initial and Final Magnitude Coefficients). Note

7 Multiobjective Algorithms and Examples

7-12

that you could use the firpm function in Signal Processing Toolbox™ software to design
this filter.

Magnitude Response with Initial and Final Magnitude Coefficients

 Generate and Plot a Pareto Front

7-13

Generate and Plot a Pareto Front

This example shows how to generate and plot a Pareto front for a 2-D multiobjective
function using fgoalattain.

The two objectives in this example are shifted and scaled versions of the convex function

1
2

+ x .

function f = simple_mult(x)

f(:,1) = sqrt(1+x.^2);

f(:,2) = 4 + 2*sqrt(1+(x-1).^2);

Both components are increasing as x decreases below 0 or increases above 1. In between
0 and 1, f1(x) is increasing and f2(x) is decreasing, so there is a tradeoff region.

t = linspace(-0.5,1.5);

F = simple_mult(t);

plot(t,F,'LineWidth',2)

hold on

plot([0,0],[0,8],'g--');

plot([1,1],[0,8],'g--');

plot([0,1],[1,6],'k.','MarkerSize',15);

text(-0.25,1.5,'Minimum(f_1(x))')

text(.75,5.5,'Minimum(f_2(x))')

hold off

legend('f_1(x)','f_2(x)')

xlabel({'x';'Tradeoff region between the green lines'})

7 Multiobjective Algorithms and Examples

7-14

To find the Pareto front, first find the unconstrained minima of the two functions. In this
case, you can see by inspection that the minimum of f1(x) is 1, and the minimum of f2(x) is
6, but in general you might need to use an optimization routine.

In general, write a function that returns a particular component of the multiobjective
function.

function z = pickindex(x,k)

z = simple_mult(x); % evaluate both objectives

z = z(k); % return objective k

Then find the minimum of each component using an optimization solver. You can use
fminbnd in this case, or fminunc for higher-dimensional problems.

 Generate and Plot a Pareto Front

7-15

k = 1;

[min1,minfn1] = fminbnd(@(x)pickindex(x,k),-1,2);

k = 2;

[min2,minfn2] = fminbnd(@(x)pickindex(x,k),-1,2);

Set goals that are the unconstrained optima for each component. You can simultaneously
achieve these goals only if the multiobjective functions do not interfere with each other,
meaning there is no tradeoff.

goal = [minfn1,minfn2];

To calculate the Pareto front, take weight vectors [a,1–a] for a from 0 through 1. Solve
the goal attainment problem, setting the weights to the various values.

nf = 2; % number of objective functions

N = 50; % number of points for plotting

onen = 1/N;

x = zeros(N+1,1);

f = zeros(N+1,nf);

fun = @simple_mult;

x0 = 0.5;

options = optimoptions('fgoalattain','Display','off');

for r = 0:N

 t = onen*r; % 0 through 1

 weight = [t,1-t];

 [x(r+1,:),f(r+1,:)] = fgoalattain(fun,x0,goal,weight,...

 [],[],[],[],[],[],[],options);

end

figure

plot(f(:,1),f(:,2),'k.');

xlabel('f_1')

ylabel('f_2')

7 Multiobjective Algorithms and Examples

7-16

You can see the tradeoff between the two objectives.

8

Linear Programming and Mixed-
Integer Linear Programming

• “Linear Programming Algorithms” on page 8-2
• “Typical Linear Programming Problem” on page 8-22
• “Maximize Long-Term Investments Using Linear Programming” on page 8-24
• “Mixed-Integer Linear Programming Algorithms” on page 8-38
• “Tuning Integer Linear Programming” on page 8-46
• “Mixed-Integer Linear Programming Basics” on page 8-49
• “Factory, Warehouse, Sales Allocation Model” on page 8-52
• “Travelling Salesman Problem” on page 8-64
• “Optimal Dispatch of Power Generators” on page 8-72
• “Mixed-Integer Quadratic Programming Portfolio Optimization” on page 8-85
• “Solve Sudoku Puzzles Via Integer Programming” on page 8-94

8 Linear Programming and Mixed-Integer Linear Programming

8-2

Linear Programming Algorithms

In this section...

“Linear Programming Definition” on page 8-2
“Interior-Point linprog Algorithm” on page 8-2
“Interior-Point-Legacy Linear Programming” on page 8-8
“Active-Set linprog Algorithm” on page 8-11
“linprog Simplex Algorithm” on page 8-15
“Dual-Simplex Algorithm” on page 8-19

Linear Programming Definition

Linear programming is the problem of finding a vector x that minimizes a linear function
fTx subject to linear constraints:

min
x

Tf x

such that one or more of the following hold:
A·x ≤ b
Aeq·x = beq
l ≤ x ≤ u.

Interior-Point linprog Algorithm

The linprog 'interior-point' algorithm is very similar to the “interior-point-
convex quadprog Algorithm” on page 9-2. It also shares many features with the
linprog 'interior-point-legacy' algorithm. These algorithms have the same
general outline:

1 Presolve, meaning simplification and conversion of the problem to a standard form.
2 Generate an initial point. The choice of an initial point is especially important for

solving interior-point algorithms efficiently, and this step can be time-consuming.
3 Predictor-corrector iterations to solve the KKT equations. This step is generally the

most time-consuming.

 Linear Programming Algorithms

8-3

Presolve

The algorithm begins by attempting to simplify the problem by removing redundancies
and simplifying constraints. The tasks performed during the presolve step include:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility,
and then fix and remove the variables.

• Check if any linear inequality constraint involves just one variable. If so, check for
feasibility, and change the linear constraint to a bound.

• Check if any linear equality constraint involves just one variable. If so, check for
feasibility, and then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and
delete the rows.

• Check if the bounds and linear constraints are consistent.
• Check if any variables appear only as linear terms in the objective function and do not

appear in any linear constraint. If so, check for feasibility and boundedness, and fix
the variables at their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding
slack variables.

If algorithm detects an infeasible or unbounded problem, it halts and issues an
appropriate exit message.

The algorithm might arrive at a single feasible point, which represents the solution.

If the algorithm does not detect an infeasible or unbounded problem in the presolve step,
it continues, if necessary, with the other steps. At the end, the algorithm reconstructs the
original problem, undoing any presolve transformations. This final step is the postsolve
step.

For simplicity, if the problem is not solved in the presolve step, the algorithm shifts all
finite lower bounds to zero.

Generate Initial Point

To set the initial point, x0, the algorithm does the following.

1 Initialize x0 to ones(n,1), where n is the number of elements of the objective
function vector f.

8 Linear Programming and Mixed-Integer Linear Programming

8-4

2 Convert all bounded components to have a lower bound of 0. If component i has a
finite upper bound u(i), then x0(i) = u/2.

3 For components that have only one bound, modify the component if necessary to lie
strictly inside the bound.

4 To put x0 close to the central path, take one predictor-corrector step, and then
modify the resulting position and slack variables to lie well within any bounds. For
details of the central path, see Nocedal and Wright [6], page 397.

Predictor-Corrector

Similar to the fmincon interior-point algorithm, the interior-point-convex
algorithm tries to find a point where the Karush-Kuhn-Tucker (KKT) conditions hold. To
describe these equations for the linear programming problem, consider the standard form
of the linear programming problem after preprocessing:

min

, .
x

Tf x

Ax b

x t u

x t

 subject to

=

+ =

≥

Ï

Ì
Ô

Ó
Ô 0

• Assume for now that all variables have at least one finite bound. By shifting and
negating components, if necessary, this assumption means that all x components have
a lower bound of 0.

•
A is the extended linear matrix that includes both linear inequalities and linear

equalities. b is the corresponding linear equality vector. A also includes terms
for extending the vector x with slack variables s that turn inequality constraints to
equality constraints:

Ax
A

A I

x

s

eq=
Ê

Ë
ÁÁ

ˆ

¯
˜̃
Ê

Ë
Á

ˆ

¯
˜

0
0

,

where x0 means the original x vector.
• t is the vector of slacks that convert upper bounds to equalities.

The Lagrangian for this system involves the following vectors:

• y, Lagrange multipliers associated with the linear equalities

 Linear Programming Algorithms

8-5

• v, Lagrange multipliers associated with the lower bound (positivity constraint)
• w, Lagrange multipliers associated with the upper bound

The Lagrangian is

L f x y Ax b v x w u x tT T T T
= - -() - - - -()

.

Therefore, the KKT conditions for this system are

f A y v w

Ax b

x t u

v x

w t

x v w t

T

i i

i i

- - + =

=

+ =

=

=

≥

0

0

0

0(, , ,) .

The algorithm first predicts a step from the Newton-Raphson formula, and then
computes a corrector step. The corrector attempts to reduce the residual in the nonlinear
complementarity equations sizi = 0. The Newton-Raphson step is

0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

- -

- -

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

Ê

Ë

A I I

A

I I

V X

W T

x

y

t

v

w

T D
D
D
D
D

ÁÁ
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

= -

- - +
-

- -

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

= -

f A y v w

Ax b

u x t

VX

WT

rT
dd

p

ub

vx

wt

r

r

r

r

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

,

where X, V, W, and T are diagonal matrices corresponding to the vectors x, v, w, and t
respectively. The residual vectors on the far right side of the equation are:

• rd, the dual residual
• rp, the primal residual
• rub, the upper bound residual
• rvx, the lower bound complementarity residual
• rwt, the upper bound complementarity residual

8 Linear Programming and Mixed-Integer Linear Programming

8-6

To solve Equation 8-1, first convert it to the symmetric matrix form

-Ê

Ë
ÁÁ

ˆ

¯
˜̃
Ê

Ë
Á

ˆ

¯
˜ =

-Ê

Ë
ÁÁ

ˆ

¯
˜̃

D A

A

x

y

R

r

T

p0

D
D

,

where

D X V T W

R r X r T r T Wrd vx wt ub

= +

= - - + +

- -

- - -

1 1

1 1 1
.

All the matrix inverses in the definitions of D and R are simple to compute because the
matrices are diagonal.

To derive Equation 8-2 from Equation 8-1, notice that the second row of Equation 8-2 is
the same as the second matrix row of Equation 8-1. The first row of Equation 8-2 comes
from solving the last two rows of Equation 8-1 for Δv and Δw, and then solving for Δt.

Equation 8-2 is symmetric, but it is not positive definite because of the –D term.
Therefore, you cannot solve it using a Cholesky factorization. A few more steps lead
to a different equation that is positive definite, and hence can be solved efficiently by
Cholesky factorization.

The second set of rows of Equation 8-2 is

A y rpD =

and the first set of rows is

- + = -D x A y RT
D D .

Substituting

D Dx D A y D RT
= +

- -1 1

gives

 Linear Programming Algorithms

8-7

AD A y AD R rT
p

- -
= +

1 1
D .

Usually, the most efficient way to find the Newton step is to solve Equation 8-3 for Δy
using Cholesky factorization. Cholesky factorization is possible because the matrix
multiplying Δy is obviously symmetric and, in the absence of degeneracies, is positive
definite. Afterwards, to find the Newton step, back substitute to find Δx, Δt, Δv, and Δw.
However, when A has a dense column, it can be more efficient to solve Equation 8-2
instead. The linprog interior-point algorithm chooses the solution algorithm based on
the density of columns.

For more algorithm details, see Mehrotra [5].

After calculating the corrected Newton step, the algorithm performs more calculations to
get both a longer current step, and to prepare for better subsequent steps. These multiple
correction calculations can improve both performance and robustness. For details, see
Gondzio [3].

Stopping Conditions

The predictor-corrector algorithm iterates until it reaches a point that is feasible
(satisfies the constraints to within tolerances) and where the relative step sizes are
small. Specifically, define

r = ()max , , , .1 A f b

The algorithm stops when all of these conditions are satisfied:

r

r

r

p

d

c

•

•

£

£

£

r

r

TolCon

TolFun

TolFun,

where

r x v x v t w t w
c

i
i i i i i i i i

= () ()()max min , , ,min , , .

rc essentially measures the size of the complementarity residuals xv and tw, which are
each vectors of zeros at a solution.

8 Linear Programming and Mixed-Integer Linear Programming

8-8

Interior-Point-Legacy Linear Programming

Introduction

The default interior-point-legacy method is based on LIPSOL ([52]), which is a variant of
Mehrotra's predictor-corrector algorithm ([47]), a primal-dual interior-point method.

Main Algorithm

The algorithm begins by applying a series of preprocessing steps (see “Preprocessing” on
page 8-10). After preprocessing, the problem has the form

min
.x

Tf x
A x b

x u
 such that

◊ =

£ £

Ï
Ì
Ó0

The upper bounds constraints are implicitly included in the constraint matrix A. With
the addition of primal slack variables s, Equation 8-4 becomes

min

, .
x

Tf x

A x b

x s u

x s

 such that

◊ =

+ =

≥ ≥

Ï

Ì
Ô

Ó
Ô 0 0

which is referred to as the primal problem: x consists of the primal variables and s
consists of the primal slack variables. The dual problem is

max
, ,

b y u w
A y w z f

z w

T T
T

-
◊ - + =

≥ ≥

Ï
Ì
Ô

ÓÔ
 such that

 0 0

where y and w consist of the dual variables and z consists of the dual slacks. The
optimality conditions for this linear program, i.e., the primal Equation 8-5 and the dual
Equation 8-6, are

F x y z s w

A x b

x s u

A y w z f

x z

s w

T

i i

i i

(, , , ,) =

◊ -
+ -

◊ - + -

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

= 00

0 0 0 0

,

, , , , x z s w≥ ≥ ≥ ≥

 Linear Programming Algorithms

8-9

where xizi and siwi denote component-wise multiplication.

The quadratic equations xizi = 0 and siwi = 0 are called the complementarity conditions for
the linear program; the other (linear) equations are called the feasibility conditions. The
quantity
xTz + sTw

is the duality gap, which measures the residual of the complementarity portion of F when
(x,z,s,w) ≥ 0.

The algorithm is a primal-dual algorithm, meaning that both the primal and the dual
programs are solved simultaneously. It can be considered a Newton-like method, applied
to the linear-quadratic system F(x,y,z,s,w) = 0 in Equation 8-7, while at the same time
keeping the iterates x, z, w, and s positive, thus the name interior-point method. (The
iterates are in the strictly interior region represented by the inequality constraints in
Equation 8-5.)

The algorithm is a variant of the predictor-corrector algorithm proposed by Mehrotra.
Consider an iterate v = [x;y;z;s;w], where [x;z;s;w] > 0 First compute the so-called
prediction direction

Dv F v F vp
T

= - ()
-

() (),
1

which is the Newton direction; then the so-called corrector direction

D Dv F v F v v ec
T

p= - () +() -
-

() � ,
1

m

where μ > 0 is called the centering parameter and must be chosen carefully. ê is a
zero-one vector with the ones corresponding to the quadratic equations in F(v), i.e.,
the perturbations are only applied to the complementarity conditions, which are all
quadratic, but not to the feasibility conditions, which are all linear. The two directions
are combined with a step length parameter α > 0 and update v to obtain the new iterate
v+:

v v v v
p c

+
= + +()a D D ,

where the step length parameter α is chosen so that
v+ = [x+;y+;z+;s+;w+]

8 Linear Programming and Mixed-Integer Linear Programming

8-10

satisfies
[x+;z+;s+;w+] > 0.

In solving for the preceding predictor/corrector directions, the algorithm computes a
(sparse) direct factorization on a modification of the Cholesky factors of A·AT. If A has
dense columns, it instead uses the Sherman-Morrison formula. If that solution is not
adequate (the residual is too large), it performs an LDL factorization of an augmented
system form of the step equations to find a solution. (See Example 4 — The Structure of
D in the MATLAB ldl function reference page.)

The algorithm then loops until the iterates converge. The main stopping criteria is a
standard one:

r

b

r

f

r

u

f x b y u w

f x b y u

b f u

T T T

T Tmax , max , max , max , ,1 1 1 1()
+

()
+

()
+

- +

-
TTw

tol

()
£ ,

where

r Ax b

r A y w z f

r x s u

b

f
T

u

= -

= - + -

= + -

are the primal residual, dual residual, and upper-bound feasibility respectively, and

f x b y u wT T T
- +

is the difference between the primal and dual objective values, and tol is some tolerance.
The sum in the stopping criteria measures the total relative errors in the optimality
conditions in Equation 8-7.

Preprocessing

The algorithm begins by attempting to simplify the problem by removing redundancies
and simplifying constraints. The tasks performed during the presolve step include:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility,
and then fix and remove the variables.

 Linear Programming Algorithms

8-11

• Check if any linear inequality constraint involves just one variable. If so, check for
feasibility, and change the linear constraint to a bound.

• Check if any linear equality constraint involves just one variable. If so, check for
feasibility, and then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and
delete the rows.

• Check if the bounds and linear constraints are consistent.
• Check if any variables appear only as linear terms in the objective function and do not

appear in any linear constraint. If so, check for feasibility and boundedness, and fix
the variables at their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding
slack variables.

If algorithm detects an infeasible or unbounded problem, it halts and issues an
appropriate exit message.

The algorithm might arrive at a single feasible point, which represents the solution.

If the algorithm does not detect an infeasible or unbounded problem in the presolve step,
it continues, if necessary, with the other steps. At the end, the algorithm reconstructs the
original problem, undoing any presolve transformations. This final step is the postsolve
step.

For simplicity, the algorithm shifts all lower bounds to zero.

While these preprocessing steps can do much to speed up the iterative part of the
algorithm, if the Lagrange multipliers are required, the preprocessing steps must be
undone since the multipliers calculated during the algorithm are for the transformed
problem, and not the original. Thus, if the multipliers are not requested, this
transformation back is not computed, and might save some time computationally.

Active-Set linprog Algorithm

The medium-scale active-set linear programming algorithm is a variant of the sequential
quadratic programming algorithm used by fmincon (“Sequential Quadratic Programming
(SQP)” on page 6-28). The difference is that the quadratic term is set to zero.

At each major iteration of the SQP method, a QP problem of the following form is solved,
where Ai refers to the ith row of the m-by-n matrix A.

8 Linear Programming and Mixed-Integer Linear Programming

8-12

min () ,

, ,...,

, ,..., .

d

T

i i e

i i e

n
q d c d

A d b i m

A d b i m m

Œ¬

=

= =

£ = +

1

1

The method used in Optimization Toolbox functions is an active set strategy (also known
as a projection method) similar to that of Gill et al., described in [18] and [17]. It has been
modified for both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of
a feasible point (if one exists). The second phase involves the generation of an iterative
sequence of feasible points that converge to the solution. In this method an active set,
Ak , is maintained that is an estimate of the active constraints (i.e., those that are on the

constraint boundaries) at the solution point. Virtually all QP algorithms are active set
methods. This point is emphasized because there exist many different methods that are
very similar in structure but that are described in widely different terms.

Ak is updated at each iteration k, and this is used to form a basis for a search direction

d̂k . Equality constraints always remain in the active set Ak . The notation for the

variable d̂k is used here to distinguish it from dk in the major iterations of the SQP

method. The search direction d̂k is calculated and minimizes the objective function while

remaining on any active constraint boundaries. The feasible subspace for d̂k is formed

from a basis Zk whose columns are orthogonal to the estimate of the active set Ak (i.e.,

A Zk k = 0). Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk, is guaranteed to remain on the boundaries of the active
constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition of the

matrix Ak
T , where l is the number of active constraints and l < m. That is, Zk is given by

Z Q l mk = +[]:, : ,1

where

 Linear Programming Algorithms

8-13

Q A
RT

k
T =

È

Î
Í

˘

˚
˙

0
.

Once Zk is found, a new search direction d̂k is sought that minimizes q(d) where d̂k

is in the null space of the active constraints. That is, d̂k is a linear combination of the

columns of Zk: d̂ Z pk k= for some vector p.

Then if you view the quadratic as a function of p, by substituting for d̂k , you have

q p p Z HZ p c Z pT
k
T

k
T

k() .= +

1

2

Differentiating this with respect to p yields

—q p Z HZ p Z ck
T

k k
T

() .= +

∇q(p) is referred to as the projected gradient of the quadratic function because it is
the gradient projected in the subspace defined by Zk. The term Z HZk

T
k is called the

projected Hessian. Assuming the Hessian matrix H is positive definite (which is the
case in this implementation of SQP), then the minimum of the function q(p) in the
subspace defined by Zk occurs when ∇q(p) = 0, which is the solution of the system of
linear equations

Z HZ p Z ck
T

k k
T

= - .

A step is then taken of the form

x x d d Z pk k k k k
T

+
= + =1 a

ˆ , ˆ . where

At each iteration, because of the quadratic nature of the objective function, there are only
two choices of step length α. A step of unity along d̂k is the exact step to the minimum

8 Linear Programming and Mixed-Integer Linear Programming

8-14

of the function restricted to the null space of Ak . If such a step can be taken, without
violation of the constraints, then this is the solution to QP (Equation 8-9). Otherwise,
the step along d̂k to the nearest constraint is less than unity and a new constraint is
included in the active set at the next iteration. The distance to the constraint boundaries
in any direction d̂k is given by

a =
- -()Ï

Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂Œ{ }
min

�
,

,...,i m

i k i

i k

A x b

A d1

which is defined for constraints not in the active set, and where the direction d̂k is

towards the constraint boundary, i.e., A d i mi k
ˆ , , ...,> =0 1 .

When n independent constraints are included in the active set, without location of the
minimum, Lagrange multipliers, λk, are calculated that satisfy the nonsingular set of
linear equations

A ck
T

kl = .

If all elements of λk are positive, xk is the optimal solution of QP (Equation 8-9). However,
if any component of λk is negative, and the component does not correspond to an equality
constraint, then the corresponding element is deleted from the active set and a new
iterate is sought.

Initialization

The algorithm requires a feasible point to start. If the current point from the SQP
method is not feasible, then you can find a point by solving the linear programming
problem

min

, , ...,

,

,g
g

g

Œ¬ Œ¬

= =

- £

 such that

x

i i e

i i

n

A x b i m

A x b

1

ii m me= + 1,..., .

 Linear Programming Algorithms

8-15

The notation Ai indicates the ith row of the matrix A. You can find a feasible point (if one
exists) to Equation 8-15 by setting x to a value that satisfies the equality constraints. You
can determine this value by solving an under- or overdetermined set of linear equations
formed from the set of equality constraints. If there is a solution to this problem, then the
slack variable γ is set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the search
direction to the steepest descent direction at each iteration, where gk is the gradient of
the objective function (equal to the coefficients of the linear objective function).

ˆ .d Z Z gk k k
T

k= -

If a feasible point is found using the preceding LP method, the main QP phase is entered.
The search direction d̂k is initialized with a search direction d̂

1 found from solving the
set of linear equations

Hd gk
ˆ ,1 = -

where gk is the gradient of the objective function at the current iterate xk (i.e., Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search for the main
SQP routine d̂k is taken as one that minimizes γ.

linprog Simplex Algorithm

The simplex algorithm, invented by George Dantzig in 1947, is one of the earliest and
best known optimization algorithms. The algorithm solves the linear programming
problem

min

,

,

.
x

Tf x

A x b

Aeq x beq

lb x ub

 such that

◊ £

◊ =

£ £

Ï

Ì
Ô

Ó
Ô

The algorithm moves along the edges of the polyhedron defined by the constraints, from
one vertex to another, while decreasing the value of the objective function, fTx, at each

8 Linear Programming and Mixed-Integer Linear Programming

8-16

step. This section describes an improved version of the original simplex algorithm that
returns a vertex optimal solution.

This section covers the following topics:

• “Main Algorithm” on page 8-16
• “Preprocessing” on page 8-17
• “Using the Simplex Algorithm” on page 8-18
• “Basic and Nonbasic Variables” on page 8-18

Main Algorithm

The simplex algorithm has two phases:

• Phase 1 — Compute an initial basic feasible point.
• Phase 2 — Compute the optimal solution to the original problem.

Note You cannot supply an initial point x0 for linprog with the simplex algorithm. If
you pass in x0 as an input argument, linprog ignores x0 and computes its own initial
point for the algorithm.

Phase 1

In phase 1, the algorithm finds an initial basic feasible solution (see “Basic and Nonbasic
Variables” on page 8-18 for a definition) by solving an auxiliary piecewise linear
programming problem. The objective function of the auxiliary problem is the linear
penalty function P P xj j

j

= ()Â ,

where Pj(xj) is defined by

P x

x u x u

l x u

l x l x

j j

j j j j

j j j

j j j j

() =

- >

£ £

- >

Ï

Ì
ÔÔ

Ó
Ô
Ô

if

if

if

0

.

P(x) measures how much a point x violates the lower and upper bound conditions. The
auxiliary problem is

 Linear Programming Algorithms

8-17

min
.x

j

j

P
A x b

Aeq x beq
Â

◊ £

◊ =

Ï
Ì
Ó

 subject to

The original problem has a feasible basis point if and only if the auxiliary problem has
minimum value 0.

The algorithm finds an initial point for the auxiliary problem by a heuristic method that
adds slack and artificial variables as necessary. The algorithm then uses this initial point
together with the simplex algorithm to solve the auxiliary problem. The solution is the
initial point for phase 2 of the main algorithm.

Phase 2

In phase 2, the algorithm applies the simplex algorithm, starting at the initial point
from phase 1, to solve the original problem. At each iteration, the algorithm tests the
optimality condition and stops if the current solution is optimal. If the current solution is
not optimal, the algorithm

1 Chooses one variable, called the entering variable, from the nonbasic variables and
adds the corresponding column of the nonbasis to the basis (see “Basic and Nonbasic
Variables” on page 8-18 for definitions).

2 Chooses a variable, called the leaving variable, from the basic variables and removes
the corresponding column from the basis.

3 Updates the current solution and the current objective value.

The algorithm chooses the entering and the leaving variables by solving two linear
systems while maintaining the feasibility of the solution.

The algorithm detects when there is no progress in the Phase 2 solution process. It
attempts to continue by performing bound perturbation. For an explanation of this part
of the algorithm, see Applegate, Bixby, Chvatal, and Cook [59].

Preprocessing

The simplex algorithm uses the same preprocessing steps as the interior-point linear
programming solver, which are described in “Preprocessing” on page 8-10. In
addition, the algorithm uses two other steps:

1 Eliminates columns that have only one nonzero element and eliminates their
corresponding rows.

8 Linear Programming and Mixed-Integer Linear Programming

8-18

2 For each constraint equation a·x = b, where a is a row of Aeq, the algorithm
computes the lower and upper bounds of the linear combination a·x as rlb and rub
if the lower and upper bounds are finite. If either rlb or rub equals b, the constraint
is called a forcing constraint. The algorithm sets each variable corresponding to a
nonzero coefficient of a·x equal to its upper or lower bound, depending on the forcing
constraint. The algorithm then deletes the columns corresponding to these variables
and deletes the rows corresponding to the forcing constraints.

Using the Simplex Algorithm

To use the simplex method, set the Algorithm option to 'simplex' using
optimoptions.

options = optimoptions(@linprog,'Algorithm','simplex');

Then call linprog with the options input argument. See the reference page for
linprog for more information.

linprog returns empty output arguments for x and fval if it detects infeasibility or
unboundedness in the preprocessing procedure. linprog returns the current point when
it

• Exceeds the maximum number of iterations
• Detects that the problem is infeasible or unbounded in phases 1 or 2

When the problem is unbounded, linprog returns x and fval in the unbounded
direction.

Basic and Nonbasic Variables

This section defines the terms basis, nonbasis, and basic feasible solutions for a linear
programming problem. The definition assumes that the problem is given in the following
standard form:

min
,

.x

Tf x
A x b

lb x ub
 such that

◊ =

£ £

Ï
Ì
Ó

(Note that A and b are not the matrix and vector defining the inequalities in the
original problem.) Assume that A is an m-by-n matrix, of rank m < n, whose columns
are {a1, a2, ..., an}. Suppose that a a a

i i i
m1 2

, ,...,{ } is a basis for the column space of A,

 Linear Programming Algorithms

8-19

with index set B = {i1, i2, ..., im}, and that N = {1, 2, ..., n}\B is the complement of B.
The submatrix AB is called a basis and the complementary submatrix AN is called a
nonbasis. The vector of basic variables is xB and the vector of nonbasic variables is xN. At
each iteration in phase 2, the algorithm replaces one column of the current basis with a
column of the nonbasis and updates the variables xB and xN accordingly.

If x is a solution to A·x = b and all the nonbasic variables in xN are equal to either their
lower or upper bounds, x is called a basic solution. If, in addition, the basic variables in
xB satisfy their lower and upper bounds, so that x is a feasible point, x is called a basic
feasible solution.

Dual-Simplex Algorithm

At a high level, the linprog 'dual-simplex' algorithm essentially performs a simplex
algorithm on the dual problem.

The algorithm begins by preprocessing as described in “Preprocessing” on page 8-10.
For details, see Andersen and Andersen [1] and Nocedal and Wright [6], Chapter 13.
This preprocessing reduces the original linear programming problem to the form of
Equation 8-4:

min
.x

Tf x
A x b

x u
 such that

◊ =

£ £

Ï
Ì
Ó0

A and b are transformed versions of the original constraint matrices. This is the primal
problem.

As explained in Equation 8-6, the dual problem is to find vectors y and w, and a slack
variable vector z that solve

max
, .

b y u w
A y w z f

z w

T T
T

-
◊ - + =

≥ ≥

Ï
Ì
Ô

ÓÔ
 such that

 0 0

It is well known (for example, see [6]) that any finite solution of the dual problem gives
a solution to the primal problem, and any finite solution of the primal problem gives
a solution of the dual problem. Furthermore, if either the primal or dual problem is
unbounded, then the other problem is infeasible. And if either the primal or dual problem

8 Linear Programming and Mixed-Integer Linear Programming

8-20

is infeasible, then the other problem is either infeasible or unbounded. Therefore, the two
problems are equivalent in terms of obtaining a finite solution, if one exists. Because the
primal and dual problems are mathematically equivalent, but the computational steps
differ, it can be better to solve the primal problem by solving the dual problem.

To help alleviate degeneracy (see Nocedal and Wright [6], page 366), the dual simplex
algorithm begins by perturbing the objective function.

Phase 1 of the dual simplex algorithm is to find a dual feasible point. The algorithm does
this by solving an auxiliary linear programming problem, similar to “Phase 1” on page
8-16 for the simplex algorithm.

During Phase 2, the solver repeatedly chooses an entering variable and a leaving
variable, analogously to “Phase 2” on page 8-17 for the primal simplex algorithm.
The algorithm chooses a leaving variable according to a technique suggested by Forrest
and Goldfarb [2] called dual steepest-edge pricing. The algorithm chooses an entering
variable using the variation of Harris’ ratio test suggested by Koberstein [4]. To help
alleviate degeneracy, the algorithm can introduce additional perturbations during Phase
2.

The solver iterates, attempting to maintain dual feasibility while reducing primal
infeasibility, until the solution to the reduced, perturbed problem is both primal feasible
and dual feasible. The algorithm unwinds the perturbations that it introduced. If the
solution (to the perturbed problem) is dual infeasible for the unperturbed (original)
problem, then the solver restores dual feasibility using primal simplex or Phase 1
algorithms. Finally, the solver unwinds the preprocessing steps to return the solution to
the original problem.

References

[1] Andersen, E. D., and K. D. Andersen. Presolving in linear programming. Math.
Programming 71, 1995, pp. 221–245.

[2] Forrest, J. J., and D. Goldfarb. Steepest-edge simplex algorithms for linear
programming. Math. Programming 57, 1992, pp. 341–374.

[3] Gondzio, J. “Multiple centrality corrections in a primal dual method for linear
programming.” Computational Optimization and Applications, Volume 6,
Number 2, 1996, pp. 137–156. Available at http://www.maths.ed.ac.uk/~gondzio/
software/correctors.ps.

http://www.maths.ed.ac.uk/~gondzio/software/correctors.ps
http://www.maths.ed.ac.uk/~gondzio/software/correctors.ps

 Linear Programming Algorithms

8-21

[4] Koberstein, A. Progress in the dual simplex algorithm for solving large scale LP
problems: techniques for a fast and stable implementation. Computational Optim.
and Application 41, 2008, pp. 185–204.

[5] Mehrotra, S. “On the Implementation of a Primal-Dual Interior Point Method.” SIAM
Journal on Optimization, Vol. 2, 1992, pp 575–601.

[6] Nocedal, J., and S. J. Wright. Numerical Optimization, Second Edition. Springer
Series in Operations Research, Springer-Verlag, 2006.

8 Linear Programming and Mixed-Integer Linear Programming

8-22

Typical Linear Programming Problem

This example shows the solution of a typical linear programming problem. The problem
is

min

,

,

.
x

Tf x

A x b

Aeq x beq

x

 such that

◊ £

◊ =

≥

Ï

Ì
Ô

Ó
Ô 0

You can load the matrices and vectors A, Aeq, b, beq, f, and the lower bounds lb into the
MATLAB workspace with

load sc50b

This problem in sc50b.mat has 48 variables, 30 inequalities, and 20 equalities.

Use linprog to solve the problem:

options = optimoptions(@linprog,'Display','iter');

[x,fval,exitflag,output] = ...

 linprog(f,A,b,Aeq,beq,lb,[],[],options);

Because the iterative display was set using optimoptions, the results displayed are

 Residuals: Primal Dual Duality Total

 Infeas Infeas Gap Rel

 A*x-b A'*y+z-f x'*z Error

 Iter 0: 1.50e+03 2.19e+01 1.91e+04 1.00e+02

 Iter 1: 1.15e+02 3.16e-15 3.62e+03 9.90e-01

 Iter 2: 9.79e-13 2.62e-15 4.32e+02 9.48e-01

 Iter 3: 3.49e-12 5.93e-15 7.78e+01 6.88e-01

 Iter 4: 4.86e-11 8.35e-16 2.38e+01 2.69e-01

 Iter 5: 2.18e-10 3.39e-16 5.05e+00 6.89e-02

 Iter 6: 1.05e-10 9.55e-17 1.64e-01 2.34e-03

 Iter 7: 9.43e-12 1.51e-16 1.09e-05 1.55e-07

 Iter 8: 1.11e-12 1.68e-16 1.09e-11 1.52e-13

Optimization terminated.

For this problem, the interior-point linear programming algorithm quickly reduces the
scaled residuals below the default tolerance of 1e-08.

 Typical Linear Programming Problem

8-23

The exitflag value is positive, telling you linprog converged. You can also get the
final function value in fval and the number of iterations in output.iterations:

exitflag,fval,output

exitflag =

 1

fval =

 -70.0000

output =

 iterations: 8

 algorithm: 'interior-point-legacy'

 cgiterations: 0

 message: 'Optimization terminated.'

 constrviolation: 4.8317e-13

 firstorderopt: 2.7908e-13

8 Linear Programming and Mixed-Integer Linear Programming

8-24

Maximize Long-Term Investments Using Linear Programming

This example shows how to use the linprog solver in Optimization Toolbox® to solve
an investment problem with deterministic returns over a fixed number of years T. The
problem is to allocate your money over available investments to maximize your final
wealth.

Problem Formulation

Suppose that you have an initial amount of money Capital_0 to invest over a
time period of T years in N zero-coupon bonds. Each bond pays an interest rate that
compounds each year, and pays the principal plus compounded interest at the end of a
maturity period. The objective is to maximize the total amount of money after T years.

You can include a constraint that no single investment is more than a certain fraction of
your total capital.

This example shows the problem setup on a small case first, and then formulates the
general case.

You can model this as a linear programming problem. Therefore, to optimize your wealth,
formulate the problem for solution by the linprog solver.

Introductory Example

Start with a small example:

• The starting amount to invest Capital_0 is $1000.
• The time period T is 5 years.
• The number of bonds N is 4.
• To model uninvested money, have one option B0 available every year that has a

maturity period of 1 year and a interest rate of 0%.
• Bond 1, denoted by B1, can be purchased in year 1, has a maturity period of 4 years,

and interest rate of 2%.
• Bond 2, denoted by B2, can be purchased in year 5, has a maturity period of 1 year,

and interest rate of 4%.
• Bond 3, denoted by B3, can be purchased in year 2, has a maturity period of 4 years,

and interest rate of 6%.

 Maximize Long-Term Investments Using Linear Programming

8-25

• Bond 4, denoted by B4, can be purchased in year 2, has a maturity period of 3 years,
and interest rate of 6%.

By splitting up the first option B0 into 5 bonds with maturity period of 1 year and
interest rate of 0%, this problem can be equivalently modeled as having a total of 9
available bonds, such that for k=1..9

• Entry k of vector PurchaseYears represents the year that bond k is available for
purchase.

• Entry k of vector Maturity represents the maturity period of bond k.
• Entry k of vector InterestRates represents the interest rate of bond k.

Visualize this problem by horizontal bars that represent the available purchase times
and durations for each bond.

% Time period in years

T = 5;

% Number of bonds

N = 4;

% Initial amount of money

Capital_0 = 1000;

% Total number of buying oportunities

nPtotal = N+T;

% Purchase times

PurchaseYears = [1;2;3;4;5;1;5;2;2];

% Bond durations

Maturity = [1;1;1;1;1;4;1;4;3];

% Interest rates

InterestRates = [0;0;0;0;0;2;4;6;6];

plotInvestments(N,PurchaseYears,Maturity,InterestRates)

8 Linear Programming and Mixed-Integer Linear Programming

8-26

Decision Variables

Represent your decision variables by a vector x, where x(k) is the dollar amount of
investment in bond k, for k=1..9. Upon maturity, the payout for investment x(k) is

Define as the total return of bond k:

% Total returns

finalReturns = (1+InterestRates/100).^Maturity;

Objective Function

The goal is to choose investments to maximize the amount of money collected at the end
of year T. From the plot, you see that investments are collected at various intermediate
years and reinvested. At the end of year T, the money returned from investments 5, 7,
and 8 can be collected and represents your final wealth:

To place this problem into the form linprog solves, turn this maximization problem into
a minimization problem using the negative of the coefficients of x(j):

 Maximize Long-Term Investments Using Linear Programming

8-27

with

f = zeros(nPtotal,1);

f([5,7,8]) = [-finalReturns(5),-finalReturns(7),-finalReturns(8)];

Linear Constraints: Invest No More Than You Have

Every year, you have a certain amount of money available to purchase bonds. Starting
with year 1, you can invest the initial capital in the purchase options and , so:

Then for the following years, you collect the returns from maturing bonds, and reinvest
them in new available bonds to obtain the system of equations:

Write these equations in the form , where each row of the matrix
corresponds to the equality that needs to be satisfied that year:

8 Linear Programming and Mixed-Integer Linear Programming

8-28

Aeq = spalloc(N+1,nPtotal,15);

Aeq(1,[1,6]) = 1;

Aeq(2,[1,2,8,9]) = [-1,1,1,1];

Aeq(3,[2,3]) = [-1,1];

Aeq(4,[3,4]) = [-1,1];

Aeq(5,[4:7,9]) = [-finalReturns(4),1,-finalReturns(6),1,-finalReturns(9)];

beq = zeros(T,1);

beq(1) = Capital_0;

Bound Constraints: No Borrowing

Because each amount invested must be positive, each entry in the solution vector must
be positive. Include this constraint by setting a lower bound lb on the solution vector .
There is no explicit upper bound on the solution vector. Thus, set the upper bound ub to
empty.

lb = zeros(size(f));

ub = [];

Solve the Problem

Solve this problem with no constraints on the amount you can invest in a bond. The
interior-point algorithm can be used to solve this type of linear programming problem.

options = optimoptions('linprog','Algorithm','interior-point');

[xsol,fval,exitflag] = linprog(f,[],[],Aeq,beq,lb,ub,[],options);

Solution found during presolve.

Visualize the Solution

The exit flag is 1, indicating that the solver found a solution. The value -fval, returned
as the second linprog output argument, corresponds to the final wealth. Plot your
investments over time.

fprintf('After %d years, the return for the initial $%g is $%g \n',...

 T,Capital_0,-fval);

plotInvestments(N,PurchaseYears,Maturity,InterestRates,xsol)

After 5 years, the return for the initial $1000 is $1262.48

 Maximize Long-Term Investments Using Linear Programming

8-29

Optimal Investment with Limited Holdings

To diversify your investments, you can choose to limit the amount invested in any one
bond to a certain percentage Pmax of the total capital that year (including the returns
for bonds that are currently in their maturity period). You obtain the following system of
inequalities:

Place these inequalities in the matrix form Ax <= b.

To set up the system of inequalities, first generate a matrix yearlyReturns that
contains the return for the bond indexed by i at year j in row i and column j. Represent
this system as a sparse matrix.

% Maximum percentage to invest in any bond

8 Linear Programming and Mixed-Integer Linear Programming

8-30

Pmax = 0.6;

% Build the return for each bond over the maturity period as a sparse

% matrix

cumMaturity = [0;cumsum(Maturity)];

xr = zeros(cumMaturity(end-1),1);

yr = zeros(cumMaturity(end-1),1);

cr = zeros(cumMaturity(end-1),1);

for i = 1:nPtotal

 mi = Maturity(i); % maturity of bond i

 pi = PurchaseYears(i); % purchase year of bond i

 idx = cumMaturity(i)+1:cumMaturity(i+1); % index into xr, yr and cr

 xr(idx) = i; % bond index

 yr(idx) = pi+1:pi+mi; % maturing years

 cr(idx) = (1+InterestRates(i)/100).^(1:mi); % returns over the maturity period

end

yearlyReturns = sparse(xr,yr,cr,nPtotal,T+1);

% Build the system of inequality constraints

A = -Pmax*yearlyReturns(:,PurchaseYears)'+ speye(nPtotal);

% Left-hand side

b = zeros(nPtotal,1);

b(PurchaseYears == 1) = Pmax*Capital_0;

Solve the problem by investing no more than 60% in any one asset. Plot the resulting
purchases. Notice that your final wealth is less than the investment without this
constraint.

[xsol,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,ub,[],options);

fprintf('After %d years, the return for the initial $%g is $%g \n',...

 T,Capital_0,-fval);

plotInvestments(N,PurchaseYears,Maturity,InterestRates,xsol)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints are satisfied to within the selected value of the constraint

tolerance.

After 5 years, the return for the initial $1000 is $1207.78

 Maximize Long-Term Investments Using Linear Programming

8-31

Model of Arbitrary Size

Create a model for a general version of the problem. Illustrate it using T = 30 years
and 400 randomly generated bonds with interest rates from 1 to 6%. This setup results
in a linear programming problem with 430 decision variables. The system of equality
constraints is represented by a sparse matrix Aeq of dimension 30-by-430 and the system
of inequalities is represented by a sparse matrix A of dimension 430-by-430.

% for reproducibility

rng default

% Initial amount of money

Capital_0 = 1000;

% Time period in years

T = 30;

% Number of bonds

N = 400;

% Total number of buying oportunities

nPtotal = N+T;

% Generate random maturity durations

Maturity = randi([1 T-1],nPtotal,1);

% Bond 1 has a maturity period of 1 year

Maturity(1:T) = 1;

% Generate random yearly interest rate for each bond

InterestRates = randi(6,nPtotal,1);

% Bond 1 has an interest rate of 0 (not invested)

InterestRates(1:T) = 0;

% Compute the return at the end of the maturity period for each bond:

finalReturns = (1+InterestRates/100).^Maturity;

8 Linear Programming and Mixed-Integer Linear Programming

8-32

% Generate random purchase years for each option

PurchaseYears = zeros(nPtotal,1);

% Bond 1 is available for purchase every year

PurchaseYears(1:T)=1:T;

for i=1:N

 % Generate a random year for the bond to mature before the end of

 % the T year period

 PurchaseYears(i+T) = randi([1 T-Maturity(i+T)+1]);

end

% Compute the years where each bond reaches maturity

SaleYears = PurchaseYears + Maturity;

% Initialize f to 0

f = zeros(nPtotal,1);

% Indices of the sale oportunities at the end of year T

SalesTidx = SaleYears==T+1;

% Expected return for the sale oportunities at the end of year T

ReturnsT = finalReturns(SalesTidx);

% Objective function

f(SalesTidx) = -ReturnsT;

% Generate the system of equality constraints.

% For each purchase option, put a coefficient of 1 in the row corresponding

% to the year for the purchase option and the column corresponding to the

% index of the purchase oportunity

xeq1 = PurchaseYears;

yeq1 = (1:nPtotal)';

ceq1 = ones(nPtotal,1);

% For each sale option, put -\rho_k, where \rho_k is the interest rate for the

% associated bond that is being sold, in the row corresponding to the

% year for the sale option and the column corresponding to the purchase

% oportunity

xeq2 = SaleYears(~SalesTidx);

yeq2 = find(~SalesTidx);

ceq2 = -finalReturns(~SalesTidx);

% Generate the sparse equality matrix

Aeq = sparse([xeq1; xeq2], [yeq1; yeq2], [ceq1; ceq2], T, nPtotal);

% Generate the right-hand side

 Maximize Long-Term Investments Using Linear Programming

8-33

beq = zeros(T,1);

beq(1) = Capital_0;

% Build the system of inequality constraints

% Maximum percentage to invest in any bond

Pmax = 0.4;

% Build the returns for each bond over the maturity period

cumMaturity = [0;cumsum(Maturity)];

xr = zeros(cumMaturity(end-1),1);

yr = zeros(cumMaturity(end-1),1);

cr = zeros(cumMaturity(end-1),1);

for i = 1:nPtotal

 mi = Maturity(i); % maturity of bond i

 pi = PurchaseYears(i); % purchase year of bond i

 idx = cumMaturity(i)+1:cumMaturity(i+1); % index into xr, yr and cr

 xr(idx) = i; % bond index

 yr(idx) = pi+1:pi+mi; % maturing years

 cr(idx) = (1+InterestRates(i)/100).^(1:mi); % returns over the maturity period

end

yearlyReturns = sparse(xr,yr,cr,nPtotal,T+1);

% Build the system of inequality constraints

A = -Pmax*yearlyReturns(:,PurchaseYears)'+ speye(nPtotal);

% Left-hand side

b = zeros(nPtotal,1);

b(PurchaseYears==1) = Pmax*Capital_0;

% Add the lower-bound constraints to the problem.

lb = zeros(nPtotal,1);

Solution with No Holding Limit

First, solve the linear programming problem without inequality constraints using the
interior-point algorithm.

% Solve the problem without inequality constraints

options = optimoptions('linprog','Algorithm','interior-point');

tic

[xsol,fval,exitflag] = linprog(f,[],[],Aeq,beq,lb,[],[],options);

toc

fprintf('\nAfter %d years, the return for the initial $%g is $%g \n',...

 T,Capital_0,-fval);

8 Linear Programming and Mixed-Integer Linear Programming

8-34

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints are satisfied to within the selected value of the constraint

tolerance.

Elapsed time is 0.013190 seconds.

After 30 years, the return for the initial $1000 is $5167.58

Solution with Limited Holdings

Now, solve the problem with the inequality constraints.

% Solve the problem with inequality constraints

options = optimoptions('linprog','Algorithm','interior-point');

tic

[xsol,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,[],[],options);

toc

fprintf('\nAfter %d years, the return for the initial $%g is $%g \n',...

 T,Capital_0,-fval);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints are satisfied to within the selected value of the constraint

tolerance.

Elapsed time is 1.235519 seconds.

After 30 years, the return for the initial $1000 is $5095.26

Even though the number of constraints increased by an order of 10, the time for the
solver to find a solution increased by an order of 100. This performance discrepancy is
partially caused by dense columns in the inequality system shown in matrix A. These
columns correspond to bonds with a long maturity period, as shown in the following
graph.

% Number of nonzero elements per column

nnzCol = sum(spones(A));

 Maximize Long-Term Investments Using Linear Programming

8-35

% Plot the maturity length vs. the number of nonzero elements for each bond

figure;

plot(Maturity,nnzCol,'o');

xlabel('Maturity period of bond k')

ylabel('Number of nonzero in column k of A')

Dense columns in the constraints lead to dense blocks in the solver's internal matrices,
yielding a loss of efficiency of its sparse methods. To speed up the solver, try the dual-
simplex algorithm, which is less sensitive to column density.

% Solve the problem with inequality constraints using dual simplex

options = optimoptions('linprog','Algorithm','dual-simplex');

tic

8 Linear Programming and Mixed-Integer Linear Programming

8-36

[xsol,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,[],[],options);

toc

fprintf('\nAfter %d years, the return for the initial $%g is $%g \n',...

 T,Capital_0,-fval);

Optimal solution found.

Elapsed time is 0.254719 seconds.

After 30 years, the return for the initial $1000 is $5095.26

In this case, the dual-simplex algorithm took much less time to obtain the same solution.

Qualitative Result Analysis

To get a feel for the solution found by linprog, compare it to the amount fmax that you
would get if you could invest all of your starting money in one bond with a 6% interest
rate (the maximum interest rate) over the full 30 year period. You can also compute the
equivalent interest rate corresponding to your final wealth.

% Maximum amount

fmax = Capital_0*(1+6/100)^T;

% Ratio (in percent)

rat = -fval/fmax*100;

% Equivalent interest rate (in percent)

rsol = ((-fval/Capital_0)^(1/T)-1)*100;

fprintf(['The amount collected is %g%% of the maximum amount $%g '...

 'that you would obtain from investing in one bond.\n'...

 'Your final wealth corresponds to a %g%% interest rate over the %d year '...

 'period.\n'], rat, fmax, rsol, T)

plotInvestments(N,PurchaseYears,Maturity,InterestRates,xsol,false)

The amount collected is 88.7137% of the maximum amount $5743.49 that you would obtain from investing in one bond.

Your final wealth corresponds to a 5.57771% interest rate over the 30 year period.

 Maximize Long-Term Investments Using Linear Programming

8-37

8 Linear Programming and Mixed-Integer Linear Programming

8-38

Mixed-Integer Linear Programming Algorithms

In this section...

“Mixed-Integer Linear Programming Definition” on page 8-38
“intlinprog Algorithm” on page 8-38

Mixed-Integer Linear Programming Definition

A mixed-integer linear program is a problem with

• Linear objective function, fTx, where f is a column vector of constants, and x is the
column vector of unknowns

• Bounds and linear constraints, but no nonlinear constraints (for definitions, see
“Writing Constraints” on page 2-31)

• Restrictions on some components of x to have integer values

In mathematical terms, given vectors f, lb, and ub, matrices A and Aeq, corresponding
vectors b and beq, and a set of indices intcon, find a vector x to solve

min

()

x

Tf x

x

A x

Aeq x beq

lb

b
 subject to

intcon are integers

◊

◊ =

£

£ xx ub£

Ï

Ì

Ô
Ô

Ó

Ô
Ô .

intlinprog Algorithm

• “Algorithm Overview” on page 8-39
• “Linear Program Preprocessing” on page 8-39
• “Linear Programming” on page 8-40
• “Mixed-Integer Program Preprocessing” on page 8-40
• “Cut Generation” on page 8-40
• “Heuristics for Finding Feasible Solutions” on page 8-41
• “Branch and Bound” on page 8-42

 Mixed-Integer Linear Programming Algorithms

8-39

Algorithm Overview

intlinprog uses this basic strategy to solve mixed-integer linear programs.
intlinprog can solve the problem in any of the stages. If it solves the problem in a
stage, intlinprog does not execute the later stages.

1 Reduce the problem size using “Linear Program Preprocessing” on page 8-39.
2 Solve an initial relaxed (noninteger) problem using “Linear Programming” on page

8-40.
3 Perform “Mixed-Integer Program Preprocessing” on page 8-40 to tighten the LP

relaxation of the mixed-integer problem.
4 Try “Cut Generation” on page 8-40 to further tighten the LP relaxation of the

mixed-integer problem.
5 Try to find integer-feasible solutions using heuristics.
6 Use a “Branch and Bound” on page 8-42 algorithm to search systematically for

the optimal solution. This algorithm solves LP relaxations with restricted ranges
of possible values of the integer variables. It attempts to generate a sequence of
updated bounds on the optimal objective function value.

Linear Program Preprocessing

According to the “Mixed-Integer Linear Programming Definition” on page 8-38, there
are matrices A and Aeq and corresponding vectors b and beq that encode a set of linear
inequalities and linear equalities

A x b

Aeq x beq

·

· .

£

=

These linear constraints restrict the solution x.

Usually, it is possible to reduce the number of variables in the problem (the number
of components of x), and reduce the number of linear constraints. While performing
these reductions can take time for the solver, they usually lower the overall time to
solution, and can make larger problems solvable. The algorithms can make solution more
numerically stable. Furthermore, these algorithms can sometimes detect an infeasible
problem.

Preprocessing steps aim to eliminate redundant variables and constraints, improve the
scaling of the model and sparsity of the constraint matrix, strengthen the bounds on
variables, and detect the primal and dual infeasibility of the model.

8 Linear Programming and Mixed-Integer Linear Programming

8-40

For details, see Andersen and Andersen [1] and Mészáros and Suhl [4].

Linear Programming

The initial relaxed problem is the linear programming problem with the same objective
and constraints as “Mixed-Integer Linear Programming Definition” on page 8-38, but
no integer constraints. Call xLP the solution to the relaxed problem, and x the solution to
the original problem with integer constraints. Clearly,
fTxLP ≤ fTx,

because xLP minimizes the same function but with fewer restrictions.

This initial relaxed LP (root node LP) and all generated LP relaxations during the
branch-and-bound algorithm are solved using linear programming solution techniques.

Mixed-Integer Program Preprocessing

During mixed-integer program preprocessing, intlinprog analyzes the linear
inequalities A*x ≤ b along with integrality restrictions to determine whether:

• The problem is infeasible.
• Some bounds can be tightened.
• Some inequalities are redundant, so can be ignored or removed.
• Some inequalities can be strengthened.
• Some integer variables can be fixed.

The IPPreprocess option lets you choose whether intlinprog takes several steps,
takes all of them, or takes almost none of them.

The main goal of mixed-integer program preprocessing is to simplify ensuing branch-and-
bound calculations. Preprocessing involves quickly preexamining and eliminating some of
the futile subproblem candidates that branch-and-bound would otherwise analyze.

For details about integer preprocessing, see Savelsbergh [6].

Cut Generation

Cuts are additional linear inequality constraints that intlinprog adds to the problem.
These inequalities attempt to restrict the feasible region of the LP relaxations so that
their solution are closer to integers. You control the type of cuts that intlinprog uses
with the CutGeneration option.

 Mixed-Integer Linear Programming Algorithms

8-41

'basic' cuts include:

• Mixed-integer rounding cuts
• Gomory cuts
• Cliques cuts
• Cover cuts
• Flow cover cuts

'intermediate' cuts include all 'basic' cuts, plus:

• Simple lift-and-project cuts
• Simple pivot-and-reduce cuts
• Reduce-and-split cuts

'advanced' cuts include all 'intermediate' cuts except reduce-and-split cuts, plus:

• Strong Chvatal-Gomory cuts
• Zero-half cuts

Another option, CutGenMaxIter, specifies an upper bound on the number of times
intlinprog iterates to generate cuts.

For details about cut generation algorithms (also called cutting plane methods), see
Cornuéjols [2].

Heuristics for Finding Feasible Solutions

To get an upper bound on the objective function, the branch-and-bound procedure must
find feasible points. A solution to an LP relaxation during branch-and-bound can be
integer feasible, which can provide an improved upper bound to the original MILP. There
are techniques for finding feasible points faster before and/or during branch-and-bound.
These techniques are heuristic, meaning they are algorithms that can succeed, but can
also fail. You set the intlinprog heuristics in the Heuristics option. The options are:

• 'rins' — intlinprog searches the neighborhood of the current best integer
feasible solution point (if available) to find a new and better solution. See Danna,
Rothberg, and Le Pape [3].

• 'rss' — intlinprog applies a hybrid procedure combining ideas from 'rins' and
local branching to search for integer feasible solutions.

• 'round' — intlinprog takes the LP solution to the relaxed problem at a node. It
rounds the integer components in a way that attempts to maintain feasibility.

8 Linear Programming and Mixed-Integer Linear Programming

8-42

• 'none' — intlinprog does not search for a feasible point. It simply takes any
feasible point it encounters in its branch-and-bound search.

Branch and Bound

The branch-and-bound method constructs a sequence of subproblems that attempt to
converge to a solution of the MILP. The subproblems give a sequence of upper and lower
bounds on the solution fTx. The first upper bound is any feasible solution, and the first
lower bound is the solution to the relaxed problem. For a discussion of the upper bound,
see “Heuristics for Finding Feasible Solutions” on page 8-41.

As explained in “Linear Programming” on page 8-40, any solution to the linear
programming relaxed problem has a lower objective function value than the solution to
the MILP. Also, any feasible point xfeas satisfies
fTxfeas ≥ fTx,

because fTx is the minimum among all feasible points.

In this context, a node is an LP with the same objective function, bounds, and linear
constraints as the original problem, but without integer constraints, and with particular
changes to the linear constraints or bounds. The root node is the original problem with no
integer constraints and no changes to the linear constraints or bounds, meaning the root
node is the initial relaxed LP.

From the starting bounds, the branch-and-bound method constructs new subproblems
by branching from the root node. The branching step is taken heuristically, according to
one of several rules. Each rule is based on the idea of splitting a problem by restricting
one variable to be less than or equal to an integer J, or greater than or equal to J+1.
These two subproblems arise when an entry in xLP, corresponding to an integer specified
in intcon, is not an integer. Here, xLP is the solution to a relaxed problem. Take J as the
floor of the variable (rounded down), and J+1 as the ceiling (rounded up). The resulting
two problems have solutions that are larger than or equal to fTxLP, because they have
more restrictions. Therefore, this procedure potentially raises the lower bound.

The performance of the branch-and-bound method depends on the rule for choosing
which variable to split (the branching rule). The algorithm uses these rules, which you
can set in the BranchingRule option:

• 'maxpscost' — Choose the fractional variable with maximal pseudocost.

 Mixed-Integer Linear Programming Algorithms

8-43

Pseudocost

The peudocost of a variable i is based on empirical estimates of the change in the
lower bound when i has been chosen as the branching variable, combined with the
fractional part of the i component of the current point x. The fractional part p is in two
pieces, the lower part and the upper part:
pi

– = x(i) – ⌊x(i)⌋
pi

+ = 1 – pi
–.

Let xi
– be the solution of the linear program restricted to have x(i) ≤ ⌊x(i)⌋, and let the

change in objective function be denoted
Δi

– = fTxi
– – fTx.

Similarly, Δi
+ is the change in objective function when the problem is restricted to

have x(i) ≥ ⌈x(i)⌉.

The objective gain per unit change in variable xi is

d
p

d
p

i
i

i

i
i

i

-

-

-

+

+

+
= =

D D

 or .

Let si
– and si

+ be the empirical averages of di
– and di

+ during the branch-and-bound
algorithm up to this point. The empirical values are initialized to the absolute value of
the objective coefficient f(i) for the terms before there are any observations. Then the
'maxpscost' rule is to branch on a node i that maximizes, for some positive weights
w+ and w–, the quantity
w– * pi

– * si
– + w+ * pi

+ * si
+.

Roughly speaking, this rule chooses a coefficient that is likely to increase the lower
bound maximally.

• 'mostfractional' — Choose the variable with fractional part closest to 1/2.
• 'maxfun' — Choose the variable with maximal corresponding absolute value in the

objective vector f.

After the algorithm branches, there are two new nodes to explore. The algorithm chooses
which node to explore among all that are available using one of these rules:

8 Linear Programming and Mixed-Integer Linear Programming

8-44

• 'minobj' — Choose the node that has the lowest objective function value.
• 'mininfeas' — Choose the node with the minimal sum of integer infeasibilities.

This means for every integer-infeasible component x(i) in the node, add up the smaller
of pi

– and pi
+, where

pi
– = x(i) – ⌊x(i)⌋

pi
+ = 1 – pi

–.
• 'simplebestproj' — Choose the node with the best projection.

Best Projection

Let xB denote the best integer-feasible point found so far, xR demote the LP relaxed
solution at the root node, and x denote the node we examine. Let in(x) denote the sum
of integer infeasibilities at the node x (see 'mininfeas'). The best projection rule is
to minimize

f x
f x f x

in x
in xT

T
B

T
R

R

+
-

()
()

.

If there is no integer-feasible point found so far, set fTxB = 0.

The branch-and-bound procedure continues, systematically generating subproblems
to analyze and discarding the ones that won’t improve an upper or lower bound on the
objective, until one of these stopping criteria is met:

• The algorithm exceeds the MaxTime option.
• The difference between the lower and upper bounds on the objective function is less

than the TolGapAbs or TolGapRel tolerances.
• The number of explored nodes exceeds the MaxNodes option.
• The number of integer feasible points exceeds the MaxNumFeasPoints option.

For details about the branch-and-bound procedure, see Nemhauser and Wolsey [5] and
Wolsey [7].

References

[1] Andersen, E. D., and Andersen, K. D. Presolving in linear programming.
Mathematical Programming 71, pp. 221–245, 1995.

 Mixed-Integer Linear Programming Algorithms

8-45

[2] Cornuéjols, G. Valid inequalities for mixed integer linear programs. Mathematical
Programming B, Vol. 112, pp. 3–44, 2008.

[3] Danna, E., Rothberg, E., Le Pape, C. Exploring relaxation induced neighborhoods to
improve MIP solutions. Mathematical Programming, Vol. 102, issue 1, pp. 71–90,
2005.

[4] Mészáros C., and Suhl, U. H. Advanced preprocessing techniques for linear and
quadratic programming. OR Spectrum, 25(4), pp. 575–595, 2003.

[5] Nemhauser, G. L. and Wolsey, L. A. Integer and Combinatorial Optimization. Wiley-
Interscience, New York, 1999.

[6] Savelsbergh, M. W. P. Preprocessing and Probing Techniques for Mixed Integer
Programming Problems. ORSA J. Computing, Vol. 6, No. 4, pp. 445–454, 1994.

[7] Wolsey, L. A. Integer Programming. Wiley-Interscience, New York, 1998.

8 Linear Programming and Mixed-Integer Linear Programming

8-46

Tuning Integer Linear Programming

In this section...

“Change Options to Improve the Solution Process” on page 8-46
“Some “Integer” Solutions Are Not Integers” on page 8-47
“Large Components Not Integer Valued” on page 8-47
“Large Coefficients Disallowed” on page 8-48

Change Options to Improve the Solution Process

Note: Often, you can change the formulation of a MILP to make it more easily solvable.
For suggestions on how to change your formulation, see Williams [1].

After you run intlinprog once, you might want to change some options and rerun it.
The changes you might want to see include:

• Lower run time
• Lower final objective function value (a better solution)
• Smaller final gap
• More or different feasible points

Here are general recommendations for option changes that are most likely to help the
solution process. Try the suggestions in this order:

1 For a faster and more accurate solution, increase the CutGenMaxIter option from
its default 10 to a higher number such as 25. This can speed up the solution, but can
also slow it.

2 For a faster and more accurate solution, change the CutGeneration option to
'intermediate' or 'advanced'. This can speed up the solution, but can use much
more memory, and can slow the solution.

3 For a faster and more accurate solution, change the IPPreprocess option to
'advanced'. This can have a large effect on the solution process, either beneficial or
not.

4 For a faster and more accurate solution, change the RootLPAlgorithm option to
'primal-simplex'. Usually this change is not beneficial, but occasionally it can be.

 Tuning Integer Linear Programming

8-47

5 To try to find more or better feasible points, increase the HeuristicsMaxNodes
option from its default 50 to a higher number such as 100.

6 To try to find more or better feasible points, change the Heuristics option to either
'round' or 'rins'.

7 To attempt to stop the solver more quickly, change the TolGapRel option to a
higher value than the default 1e-4. Similarly, to attempt to obtain a more accurate
answer, change the TolGapRel option to a lower value. These changes do not always
improve results.

8 For a more accurate solution, decrease the RelObjThreshold option from its
default 1e-4 to a smaller positive value such as 1e-6. This change can cause
intlinprog to take more time to solve the problem, and to find more integer
feasible points during its solution process.

Some “Integer” Solutions Are Not Integers

Often, some supposedly integer-valued components of the solution x(intcon) are not
precisely integers. intlinprog considers as integers all solution values within the
TolInteger tolerance of an integer.

To round all supposed integers to be precisely integers, use the round function.

x(intcon) = round(x(intcon));

Caution Rounding can cause solutions to become infeasible. Check feasibility after
rounding:

max(A*x - b) % see if entries are not too positive, so have small infeasibility

max(abs(Aeq*x - beq)) % see if entries are near enough to zero

max(x - ub) % positive entries are violated bounds

max(lb - x) % positive entries are violated bounds

Large Components Not Integer Valued

intlinprog does not enforce that solution components be integer valued when their
absolute values exceed 2.1e9. When your solution has such components, intlinprog
warns you. If you receive this warning, check the solution to see whether supposedly
integer-valued components of the solution are close to integers.

8 Linear Programming and Mixed-Integer Linear Programming

8-48

Large Coefficients Disallowed

intlinprog does not allow components of the problem, such as coefficients in f, A, or
ub, to exceed 1e15 in absolute value. If you try to run intlinprog with such a problem,
intlinprog issues an error.

If you get this error, sometimes you can scale the problem to have smaller coefficients:

• For coefficients in f that are too large, try multiplying f by a small positive scaling
factor.

• For constraint coefficients that are too large, try multiplying all bounds and
constraint matrices by the same small positive scaling factor.

References

[1] Williams, H. Paul. Model Building in Mathematical Programming. Wiley, 2013.

 Mixed-Integer Linear Programming Basics

8-49

Mixed-Integer Linear Programming Basics

This example shows how to solve a mixed-integer linear program. The example is
not complex, but it shows typical steps in formulating a problem in the syntax for
intlinprog.

Problem description

You want to blend a variety of steels with various chemical compositions to obtain 25
tons of steel with a specific chemical composition. The result should have 5% carbon and
5% molybdenum by weight, meaning 25 tons*5% = 1.25 tons of carbon and 1.25 tons of
molybdenum. The objective is to minimize the cost for blending the steel.

This problem is taken from Carl-Henrik Westerberg, Bengt Bjorklund and Eskil
Hultman, “An Application of Mixed Integer Programming in a Swedish Steel Mill.”
Interfaces February 1977 Vol. 7, No. 2 pp. 39–43, whose abstract is at http://
interfaces.journal.informs.org/content/7/2/39.abstract.

Four ingots of steel are available for purchase. Only one of each ingot is available.

Ingot Weight (tons) %Carbon %Molybdenum Cost/ton

1 5 5 3 $350
2 3 4 3 $330
3 4 5 4 $310
4 6 3 4 $280

Three grades of alloy steel are available for purchase, and one grade of scrap steel. Alloy
and scrap steels can be purchased in fractional amounts.

Alloy %Carbon %Molybdenum Cost/ton

1 8 6 $500
2 7 7 $450
3 6 8 $400
Scrap 3 9 $100

To formulate the problem, first decide on the control variables. Take variable x(1) = 1
to mean you purchase ingot 1, and x(1) = 0 to mean you do not purchase the ingot.

http://interfaces.journal.informs.org/content/7/2/39.abstract
http://interfaces.journal.informs.org/content/7/2/39.abstract

8 Linear Programming and Mixed-Integer Linear Programming

8-50

Similarly, variables x(2) through x(4) are binary variables indicating that you
purchase ingots 2 through 4.

Variables x(5) through x(7) are the quantities of alloys 1, 2, and 3 you purchase, and
x(8) is the quantity of scrap steel you purchase.

MATLAB formulation

Formulate the problem by specifying the inputs for intlinprog. The relevant
intlinprog syntax is as follows.

[x,fval] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

Create the inputs for intlinprog from first (f) through last (ub).

f is the vector of cost coefficients. The coefficients representing the costs of ingots are the
ingot weights times their cost per ton.

f = [350*5,330*3,310*4,280*6,500,450,400,100];

The integer variables are the first four.

intcon = 1:4;

Tip To specify binary variables, set the variables to be integers in intcon, and give them
a lower bound of 0 and an upper bound of 1.

There are no linear inequality constraints, so A and b are empty [].

There are three equality constraints. The first is that the total weight is 25 tons.
5*x(1) + 3*x(2) + 4*x(3) + 6*x(4) + x(5) + x(6) + x(7) + x(8) = 25.

The second constraint is that the weight of carbon is 5% of 25 tons, or 1.25 tons.
5*0.05*x(1) + 3*0.04*x(2) + 4*0.05*x(3) + 6*0.03*x(4)

+ 0.08*x(5) + 0.07*x(6) + 0.06*x(7) + 0.03*x(8) = 1.25.

The third constraint is that the weight of molybdenum is 1.25 tons.
5*0.03*x(1) + 3*0.03*x(2) + 4*0.04*x(3) + 6*0.04*x(4)

+ 0.06*x(5) + 0.07*x(6) + 0.08*x(7) + 0.09*x(8) = 1.25.

In matrix form, Aeq*x = beq, where

 Mixed-Integer Linear Programming Basics

8-51

Aeq = [5,3,4,6,1,1,1,1;

 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;

 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09];

beq = [25;1.25;1.25];

Each variable is bounded below by zero. The integer variables are bounded above by one.

lb = zeros(8,1);

ub = ones(8,1);

ub(5:end) = Inf; % No upper bound on noninteger variables

Solve the problem

Now that you have all the inputs, call the solver.

[x,fval] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub);

View the solution.

x,fval

x =

 1.0000

 1.0000

 0

 1.0000

 7.2500

 0

 0.2500

 3.5000

fval =

 8.4950e+03

The optimal purchase costs $8,495. Buy ingots 1, 2, and 4, but not 3, and buy 7.25 tons of
alloy 1, 0.25 ton of alloy 3, and 3.5 tons of scrap steel.

Set intcon = [] to see the effect of solving the problem without integer constraints.
The solution is different, and is not sensible, because you cannot purchase a fraction of
an ingot.

8 Linear Programming and Mixed-Integer Linear Programming

8-52

Factory, Warehouse, Sales Allocation Model
This example shows how to set up and solve a mixed-integer linear programming
problem. The problem is to find the optimal production and distribution levels among a
set of factories, warehouses, and sales outlets.

The example first generates random locations for factories, warehouses, and sales
outlets. Feel free to modify the scaling parameter , which scales both the size of the
grid in which the production and distribution facilities reside, but also scales the number
of these facilities so that the density of facilities of each type per grid area is independent
of .

Facility Locations

For a given value of the scaling parameter , suppose that there are the following:

• factories
• warehouses
• sales outlets

These facilities are on separate integer grid points between 1 and in the and
 directions. In order that the facilities have separate locations, you require that

. In this example, take , , , and .

Production and Distribution

There are products made by the factories. Take .

The demand for each product in a sales outlet is . The demand is the quantity
that can be sold in a time interval. One constraint on the model is that the demand is
met, meaning the system produces and distributes exactly the quantities in the demand.

There are capacity constraints on each factory and each warehouse.

• The production of product at factory is less than .
• The capacity of warehouse is .
• The amount of product that can be transported from warehouse to a sales outlet

in the time interval is less than , where is the turnover
rate of product .

 Factory, Warehouse, Sales Allocation Model

8-53

Suppose that each sales outlet receives its supplies from just one warehouse. Part of the
problem is to determine the cheapest mapping of sales outlets to warehouses.

Costs

The cost of transporting products from factory to warehouse, and from warehouse to sales
outlet, depends on the distance between the facilities, and on the particular product. If

 is the distance between facilities and , then the cost of shipping a product
between these facilities is the distance times the transportation cost :

The distance in this example is the grid distance, also known as the distance. It is the
sum of the absolute difference in coordinates and coordinates.

The cost of making a unit of product in factory is .

Optimization Problem

Given a set of facility locations, and the demands and capacity constraints, find:

• A production level of each product at each factory
• A distribution schedule for products from factories to warehouses
• A distribution schedule for products from warehouses to sales outlets

These quantities must ensure that demand is satisfied and total cost is minimized. Also,
each sales outlet is required to receive all its products from exactly one warehouse.

Variables and Equations for the Optimization Problem

The control variables, meaning the ones you can change in the optimization, are

• = the amount of product that is transported from factory to warehouse
• = a binary variable taking value 1 when sales outlet is associated with

warehouse

The objective function to minimize is

8 Linear Programming and Mixed-Integer Linear Programming

8-54

The constraints are

 (capacity of factory).

 (demand is met).

 (capacity of warehouse).

 (each sales outlet associates to one warehouse).

 (nonnegative production).

 (binary).

The variables and appear in the objective and constraint functions linearly. Because
 is restricted to integer values, the problem is a mixed-integer linear program (MILP).

Generate a Random Problem: Facility Locations

Set the values of the , , , and parameters, and generate the facility locations.

rng default % for reproducibility

N = 20; % N from 10 to 30 seems to work. Choose large values with caution.

N2 = N*N;

f = 0.05; % density of factories

w = 0.05; % density of warehouses

s = 0.1; % density of sales outlets

F = floor(f*N2); % number of factories

W = floor(w*N2); % number of warehouses

S = floor(s*N2); % number of sales outlets

xyloc = randperm(N2,F+W+S); % unique locations of facilities

[xloc,yloc] = ind2sub([N N],xyloc);

Of course, it is not realistic to take random locations for facilities. This example is
intended to show solution techniques, not how to generate good facility locations.

 Factory, Warehouse, Sales Allocation Model

8-55

Plot the facilities. Facilities 1 through F are factories, F+1 through F+W are warehouses,
and F+W+1 through F+W+S are sales outlets.

h = figure;

plot(xloc(1:F),yloc(1:F),'rs',xloc(F+1:F+W),yloc(F+1:F+W),'k*',...

 xloc(F+W+1:F+W+S),yloc(F+W+1:F+W+S),'bo');

legend('Factory','Warehouse','Sales outlet','Location','EastOutside')

xlim([0 N+1]);ylim([0 N+1])

Generate Random Capacities, Costs, and Demands

Generate random production costs, capacities, turnover rates, and demands.

P = 20; % 20 products

8 Linear Programming and Mixed-Integer Linear Programming

8-56

% Production costs between 20 and 100

pcost = 80*rand(F,P) + 20;

% Production capacity between 500 and 1500 for each product/factory

pcap = 1000*rand(F,P) + 500;

% Warehouse capacity between P*400 and P*800 for each product/warehouse

wcap = P*400*rand(W,P) + P*400;

% Product turnover rate between 1 and 3 for each product

turn = 2*rand(1,P) + 1;

% Product transport cost per distance between 5 and 10 for each product

tcost = 5*rand(1,P) + 5;

% Product demand by sales outlet between 200 and 500 for each

% product/outlet

d = 300*rand(S,P) + 200;

These random demands and capacities can lead to infeasible problems. In other words,
sometimes the demand exceeds the production and warehouse capacity constraints. If
you alter some parameters and get an infeasible problem, during solution you will get an
exitflag of -2.

Generate Objective and Constraint Matrices and Vectors

The objective function vector obj in intlincon consists of the coefficients of the
variables and . So there are naturally P*F*W + S*W coefficients in obj.

One way to generate the coefficients is to begin with a P-by-F-by-W array obj1 for the
 coefficients, and an S-by-W array obj2 for the coefficients. Then convert these

arrays to two vectors and combine them into obj by calling

obj = [obj1(:);obj2(:)];

obj1 = zeros(P,F,W); % Allocate arrays

obj2 = zeros(S,W);

Throughout the generation of objective and constraint vectors and matrices, we generate
the array or the array, and then convert the result to a vector.

To begin generating the inputs, generate the distance arrays distfw(i,j) and
distsw(i,j).

 Factory, Warehouse, Sales Allocation Model

8-57

distfw = zeros(F,W); % Allocate matrix for factory-warehouse distances

for ii = 1:F

 for jj = 1:W

 distfw(ii,jj) = abs(xloc(ii) - xloc(F + jj)) + abs(yloc(ii) ...

 - yloc(F + jj));

 end

end

distsw = zeros(S,W); % Allocate matrix for sales outlet-warehouse distances

for ii = 1:S

 for jj = 1:W

 distsw(ii,jj) = abs(xloc(F + W + ii) - xloc(F + jj)) ...

 + abs(yloc(F + W + ii) - yloc(F + jj));

 end

end

Generate the entries of obj1 and obj2.

for ii = 1:P

 for jj = 1:F

 for kk = 1:W

 obj1(ii,jj,kk) = pcost(jj,ii) + tcost(ii)*distfw(jj,kk);

 end

 end

end

for ii = 1:S

 for jj = 1:W

 obj2(ii,jj) = distsw(ii,jj)*sum(d(ii,:).*tcost);

 end

end

Combine the entries into one vector.

obj = [obj1(:);obj2(:)]; % obj is the objective function vector

Now create the constraint matrices.

The width of each linear constraint matrix is the length of the obj vector.

matwid = length(obj);

There are two types of linear inequalities: the production capacity constraints, and the
warehouse capacity constraints.

8 Linear Programming and Mixed-Integer Linear Programming

8-58

There are P*F production capacity constraints, and W warehouse capacity constraints.
The constraint matrices are quite sparse, on the order of 1% nonzero, so save memory by
using sparse matrices.

Aineq = spalloc(P*F + W,matwid,P*F*W + S*W); % Allocate sparse Aeq

bineq = zeros(P*F + W,1); % Allocate bineq as full

% Zero matrices of convenient sizes:

clearer1 = zeros(size(obj1));

clearer12 = clearer1(:);

clearer2 = zeros(size(obj2));

clearer22 = clearer2(:);

% First the production capacity constraints

counter = 1;

for ii = 1:F

 for jj = 1:P

 xtemp = clearer1;

 xtemp(jj,ii,:) = 1; % Sum over warehouses for each product and factory

 xtemp = sparse([xtemp(:);clearer22]); % Convert to sparse

 Aineq(counter,:) = xtemp'; % Fill in the row

 bineq(counter) = pcap(ii,jj);

 counter = counter + 1;

 end

end

% Now the warehouse capacity constraints

vj = zeros(S,1); % The multipliers

for jj = 1:S

 vj(jj) = sum(d(jj,:)./turn); % A sum of P elements

end

for ii = 1:W

 xtemp = clearer2;

 xtemp(:,ii) = vj;

 xtemp = sparse([clearer12;xtemp(:)]); % Convert to sparse

 Aineq(counter,:) = xtemp'; % Fill in the row

 bineq(counter) = wcap(ii);

 counter = counter + 1;

end

There are two types of linear equality constraints: the constraint that demand is met,
and the constraint that each sales outlet corresponds to one warehouse.

Aeq = spalloc(P*W + S,matwid,P*W*(F+S) + S*W); % Allocate as sparse

 Factory, Warehouse, Sales Allocation Model

8-59

beq = zeros(P*W + S,1); % Allocate vectors as full

counter = 1;

% Demand is satisfied:

for ii = 1:P

 for jj = 1:W

 xtemp = clearer1;

 xtemp(ii,:,jj) = 1;

 xtemp2 = clearer2;

 xtemp2(:,jj) = -d(:,ii);

 xtemp = sparse([xtemp(:);xtemp2(:)]'); % Change to sparse row

 Aeq(counter,:) = xtemp; % Fill in row

 counter = counter + 1;

 end

end

% Only one warehouse for each sales outlet:

for ii = 1:S

 xtemp = clearer2;

 xtemp(ii,:) = 1;

 xtemp = sparse([clearer12;xtemp(:)]'); % Change to sparse row

 Aeq(counter,:) = xtemp; % Fill in row

 beq(counter) = 1;

 counter = counter + 1;

end

Bound Constraints and Integer Variables

The integer variables are those from length(obj1) + 1 to the end.

intcon = P*F*W+1:length(obj);

The upper bounds are from length(obj1) + 1 to the end also.

lb = zeros(length(obj),1);

ub = Inf(length(obj),1);

ub(P*F*W+1:end) = 1;

Turn off iterative display so that you don't get hundreds of lines of output. Include a plot
function to monitor the solution progress.

opts = optimoptions('intlinprog','Display','off','PlotFcns',@optimplotmilp);

Solve the Problem

You generated all the solver inputs. Call the solver to find the solution.

8 Linear Programming and Mixed-Integer Linear Programming

8-60

[solution,fval,exitflag,output] = intlinprog(obj,intcon,...

 Aineq,bineq,Aeq,beq,lb,ub,opts);

if isempty(solution) % If the problem is infeasible or you stopped early with no solution

 disp('intlinprog did not return a solution.')

 return % Stop the script because there is nothing to examine

end

Examine the Solution

The solution is feasible, to within the given tolerances.

exitflag

infeas1 = max(Aineq*solution - bineq)

infeas2 = norm(Aeq*solution - beq,Inf)

 Factory, Warehouse, Sales Allocation Model

8-61

exitflag =

 1

infeas1 =

 1.1369e-12

infeas2 =

 7.9581e-13

Check that the integer components are really integers, or are close enough that it is
reasonable to round them. To understand why these variables might not be exactly
integers, see the documentation.

diffint = norm(solution(intcon) - round(solution(intcon)),Inf)

diffint =

 4.4409e-16

Some integer variables are not exactly integers, but all are very close. So round the
integer variables.

solution(intcon) = round(solution(intcon));

Check the feasibility of the rounded solution, and the change in objective function value.

infeas1 = max(Aineq*solution - bineq)

infeas2 = norm(Aeq*solution - beq,Inf)

diffrounding = norm(fval - obj(:)'*solution,Inf)

infeas1 =

 1.1369e-12

8 Linear Programming and Mixed-Integer Linear Programming

8-62

infeas2 =

 1.0232e-12

diffrounding =

 7.4506e-09

Rounding the solution did not appreciably change its feasibility.

You can examine the solution most easily by reshaping it back to its original dimensions.

solution1 = solution(1:P*F*W); % The continuous variables

solution2 = solution(intcon); % The integer variables

solution1 = reshape(solution1,P,F,W);

solution2 = reshape(solution2,S,W);

For example, how many sales outlets are associated with each warehouse? Notice that, in
this case, some warehouses have 0 associated outlets, meaning the warehouses are not in
use in the optimal solution.

outlets = sum(solution2,1) % Sum over the sales outlets

outlets =

 Columns 1 through 13

 2 0 2 3 3 2 2 3 2 3 2 1 2

 Columns 14 through 20

 1 4 0 3 3 2 0

Plot the connection between each sales outlet and its warehouse.

figure(h);

hold on

for ii = 1:S

 jj = find(solution2(ii,:)); % Index of warehouse associated with ii

 xsales = xloc(F+W+ii); ysales = yloc(F+W+ii);

 xwarehouse = xloc(F+jj); ywarehouse = yloc(F+jj);

 Factory, Warehouse, Sales Allocation Model

8-63

 if rand(1) < .5 % Draw y direction first half the time

 plot([xsales,xsales,xwarehouse],[ysales,ywarehouse,ywarehouse],'g--')

 else % Draw x direction first the rest of the time

 plot([xsales,xwarehouse,xwarehouse],[ysales,ysales,ywarehouse],'g--')

 end

end

hold off

title('Mapping of sales outlets to warehouses')

The black * with no green lines represent the unused warehouses.

8 Linear Programming and Mixed-Integer Linear Programming

8-64

Travelling Salesman Problem

This example shows how to use binary integer programming to solve the classic
travelling salesman problem. This problem involves finding the shortest closed tour
(path) through a set of stops (cities). In this case there are 200 stops, but you can easily
change the nStops variable to get a different problem size. You'll solve the initial
problem and see that the solution has subtours. This means the optimal solution
found doesn't give one continuous path through all the points, but instead has several
disconnected loops. You'll then use an iterative process of determining the subtours,
adding constraints, and rerunning the optimization until the subtours are eliminated.

Draw the Map and Stops

Generate random stops inside a crude polygonal representation of the continental U.S.

figure;

load('usborder.mat','x','y','xx','yy');

rng(3,'twister') % makes a plot with stops in Maine & Florida, and is reproducible

nStops = 200; % you can use any number, but the problem size scales as N^2

stopsLon = zeros(nStops,1); % allocate x-coordinates of nStops

stopsLat = stopsLon; % allocate y-coordinates

n = 1;

while (n <= nStops)

 xp = rand*1.5;

 yp = rand;

 if inpolygon(xp,yp,xx,yy) % test if inside the border

 stopsLon(n) = xp;

 stopsLat(n) = yp;

 n = n+1;

 end

end

plot(x,y,'Color','red'); % draw the outside border

hold on

% Add the stops to the map

plot(stopsLon,stopsLat,'*b')

hold off

 Travelling Salesman Problem

8-65

Problem Formulation

Formulate the travelling salesman problem for integer linear programming as follows:

• Generate all possible trips, meaning all distinct pairs of stops.

• Calculate the distance for each trip.

• The cost function to minimize is the sum of the trip distances for each trip in the tour.

• The decision variables are binary, and associated with each trip, where each 1
represents a trip that exists on the tour, and each 0 represents a trip that is not on
the tour.

8 Linear Programming and Mixed-Integer Linear Programming

8-66

• To ensure that the tour includes every stop, include the linear constraint that each
stop is on exactly two trips. This means one arrival and one departure from the stop.

Calculate Distances Between Points

Because there are 200 stops, there are 19,900 trips, meaning 19,900 binary variables (#
variables = 200 choose 2).

Generate all the trips, meaning all pairs of stops.

idxs = nchoosek(1:nStops,2);

Calculate all the trip distances, assuming that the earth is flat in order to use the
Pythagorean rule.

dist = hypot(stopsLat(idxs(:,1)) - stopsLat(idxs(:,2)), ...

 stopsLon(idxs(:,1)) - stopsLon(idxs(:,2)));

lendist = length(dist);

With this definition of the dist vector, the length of a tour is

dist'*x_tsp

where x_tsp is the binary solution vector. This is the distance of a tour that you try to
minimize.

Equality Constraints

The problem has two types of equality constraints. The first enforces that there must
be 200 trips total. The second enforces that each stop must have two trips attached to it
(there must be a trip to each stop and a trip departing each stop).

Specify the first type of equality constraint, that you must have nStops trips, in the form
Aeq*x_tsp = beq.

Aeq = spones(1:length(idxs)); % Adds up the number of trips

beq = nStops;

To specify the second type of equality constraint, that there needs to be two trips
attached to each stop, extend the Aeq matrix as sparse.

Aeq = [Aeq;spalloc(nStops,length(idxs),nStops*(nStops-1))]; % allocate a sparse matrix

 Travelling Salesman Problem

8-67

for ii = 1:nStops

 whichIdxs = (idxs == ii); % find the trips that include stop ii

 whichIdxs = sparse(sum(whichIdxs,2)); % include trips where ii is at either end

 Aeq(ii+1,:) = whichIdxs'; % include in the constraint matrix

end

beq = [beq; 2*ones(nStops,1)];

Binary Bounds

All decision variables are binary. Now, set the intcon argument to the number of
decision variables, put a lower bound of 0 on each, and an upper bound of 1.

intcon = 1:lendist;

lb = zeros(lendist,1);

ub = ones(lendist,1);

Optimize Using intlinprog

The problem is ready to be solved. Call the solver.

opts = optimoptions('intlinprog','Display','off');

[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts);

Visualize the Solution

hold on

segments = find(x_tsp); % Get indices of lines on optimal path

lh = zeros(nStops,1); % Use to store handles to lines on plot

lh = updateSalesmanPlot(lh,x_tsp,idxs,stopsLon,stopsLat);

title('Solution with Subtours');

8 Linear Programming and Mixed-Integer Linear Programming

8-68

As can be seen on the map, the solution has several subtours. The constraints specified
so far do not prevent these subtours from happening. In order to prevent any possible
subtour from happening, you would need an incredibly large number of inequality
constraints.

Subtour Constraints

Because you can't add all of the subtour constraints, take an iterative approach. Detect
the subtours in the current solution, then add inequality constraints to prevent those
particular subtours from happening. By doing this, you find a suitable tour in a few
iterations.

 Travelling Salesman Problem

8-69

Eliminate subtours with inequality constraints. An example of how this works is if you
have five points in a subtour, then you have five lines connecting those points to create
the subtour. Eliminate this subtour by implementing an inequality constraint to say
there must be less than or equal to four lines between these five points.

Even more, find all lines between these five points, and constrain the solution not to have
more than four of these lines present. This is a correct constraint because if five or more
of the lines existed in a solution, then the solution would have a subtour (a graph with
nodes and edges always contains a cycle).

The detectSubtours function analyzes the solution and returns a cell array of vectors.
Each vector in the cell array contains the stops involved in that particular subtour.

tours = detectSubtours(x_tsp,idxs);

numtours = length(tours); % number of subtours

fprintf('# of subtours: %d\n',numtours);

of subtours: 28

Include the linear inequality constraints to eliminate subtours, and repeatedly call the
solver, until just one subtour remains.

A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint matrix

b = [];

while numtours > 1 % repeat until there is just one subtour

 % Add the subtour constraints

 b = [b;zeros(numtours,1)]; % allocate b

 A = [A;spalloc(numtours,lendist,nStops)]; % a guess at how many nonzeros to allocate

 for ii = 1:numtours

 rowIdx = size(A,1)+1; % Counter for indexing

 subTourIdx = tours{ii}; % Extract the current subtour

% The next lines find all of the variables associated with the

% particular subtour, then add an inequality constraint to prohibit

% that subtour and all subtours that use those stops.

 variations = nchoosek(1:length(subTourIdx),2);

 for jj = 1:length(variations)

 whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ...

 (sum(idxs==subTourIdx(variations(jj,2)),2));

 A(rowIdx,whichVar) = 1;

 end

 b(rowIdx) = length(subTourIdx)-1; % One less trip than subtour stops

 end

8 Linear Programming and Mixed-Integer Linear Programming

8-70

 % Try to optimize again

 [x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,ub,opts);

 % Visualize result

 lh = updateSalesmanPlot(lh,x_tsp,idxs,stopsLon,stopsLat);

 % How many subtours this time?

 tours = detectSubtours(x_tsp,idxs);

 numtours = length(tours); % number of subtours

 fprintf('# of subtours: %d\n',numtours);

end

title('Solution with Subtours Eliminated');

hold off

of subtours: 22

of subtours: 10

of subtours: 5

of subtours: 3

of subtours: 4

of subtours: 1

 Travelling Salesman Problem

8-71

Solution Quality

The solution represents a feasible tour, because it is a single closed loop. But is it a
minimal-cost tour? One way to find out is to examine the output structure.

disp(output.absolutegap)

 0.0021

The smallness of the absolute gap implies that the solution is either optimal or has a
total length that is close to optimal.

8 Linear Programming and Mixed-Integer Linear Programming

8-72

Optimal Dispatch of Power Generators

This example shows how to schedule two gas-fired electric generators optimally, meaning
to get the most revenue minus cost. While the example is not entirely realistic, it does
show how to take into account costs that depend on decision timing.

Problem Definition

The electricity market has different prices at different times of day. If you have
generators, you can take advantage of this variable pricing by scheduling your generators
to operate when prices are high. Suppose that there are two generators that you control.
Each generator has three power levels (off, low, and high). Each generator has a specified
rate of fuel consumption and power production at each power level. Of course, fuel
consumption is 0 when the generator is off.

You can assign a power level to each generator during each half-hour time interval
during a day (24 hours, so 48 intervals). Based on historical records, you can assume
that you know the revenue per megawatt-hour (MWh) that you get in each time interval.
The data for this example is from the Australian Energy Market Operator http://
www.nemweb.com.au/REPORTS/CURRENT/ in mid-2013, and is used under their
terms http://www.aemo.com.au/About-AEMO/Legal-Notices/Copyright-
Permissions.

load dispatchPrice; % Get poolPrice, which is the revenue per MWh

bar(poolPrice,.5)

xlim([.5,48.5])

xlabel('Price per MWh at each period')

 Optimal Dispatch of Power Generators

8-73

There is a cost to start a generator after it has been off. The other constraint is a
maximum fuel usage for the day. The maximum fuel constraint is because you buy your
fuel a day ahead of time, so can use only what you just bought.

Problem Notation and Parameters

You can formulate the scheduling problem as a binary integer programming problem as
follows. Define indexes i, j, and k, and a binary scheduling vector y as:

• nPeriods = the number of time periods, 48 in this case.
• i = a time period, 1 <= i <= 48.
• j = a generator index, 1 <= j <= 2 for this example.

8 Linear Programming and Mixed-Integer Linear Programming

8-74

• y(i,j,k) = 1 when period i, generator j is operating at power level k. Let
low power be k = 1, and high power be k = 2. The generator is off when sum_k
y(i,j,k) = 0.

You need to determine when a generator starts after being off. Let

• z(i,j) = 1 when generator j is off at period i, but is on at period i + 1. z(i,j)
= 0 otherwise. In other words, z(i,j) = 1 when sum_k y(i,j,k) = 0 and sum_k
y(i+1,j,k) = 1.

Obviously, you need a way to set z automatically based on the settings of y. A linear
constraint below handles this setting.

You also need the parameters of the problem for costs, generation levels for each
generator, consumption levels of the generators, and fuel available.

• poolPrice(i) -- Revenue in dollars per MWh in interval i.
• gen(j,k) -- MW generated by generator j at power level k.
• fuel(j,k) -- Fuel used by generator j at power level k.
• totalfuel -- Fuel available in one day.
• startCost -- Cost in dollars to start a generator after it has been off.
• fuelPrice -- Cost for a unit of fuel.

You got poolPrice when you executed load dispatchPrice;. Set the other
parameters as follows.

fuelPrice = 3;

totalfuel = 3.95e4;

nPeriods = length(poolPrice); % 48 periods

nGens = 2; % Two generators

gen = [61,152;50,150]; % Generator 1 low = 61 MW, high = 152 MW

fuel = [427,806;325,765]; % Fuel consumption for generator 2 is low = 325, high = 765

startCost = 1e4; % Cost to start a generator after it has been off

Generator Efficiency

Examine the efficiency of the two generators at their two operating points.

efficiency = gen./fuel; % Calculate electricity per unit fuel use

rr = efficiency'; % for plotting

 Optimal Dispatch of Power Generators

8-75

h = bar(rr);

h(1).FaceColor = 'g';

h(2).FaceColor = 'c';

legend(h,'Generator 1','Generator 2','Location','NorthEastOutside')

ax = gca;

ax.XTick = [1,2];

ax.XTickLabel = {'Low','High'};

ylim([.1,.2])

ylabel('Efficiency')

Notice that generator 2 is a bit more efficient than generator 1 at its corresponding
operating points (low or high), but generator 1 at its high operating point is more efficient
than generator 2 at its low operating point.

8 Linear Programming and Mixed-Integer Linear Programming

8-76

Variables for Solution

To set up the problem, you need to encode all the problem data and constraints in the
form that the intlinprog solver requires. You have variables y(i,j,k) that represent
the solution of the problem, and z(i,j) auxiliary variables for charging to turn on a
generator. y is an nPeriods-by-nGens-by-2 array, and z is an nPeriods-by-nGens
array.

To put these variables in one long vector, define the variable of unknowns x:

x = [y(:);z(:)];

For bounds and linear constraints, it is easiest to use the natural array formulation of y
and z, then convert the constraints to the total decision variable, the vector x.

Bounds

The solution vector x consists of binary variables. Set up the bounds lb and ub.

lby = zeros(nPeriods,nGens,2); % 0 for the y variables

lbz = zeros(nPeriods,nGens); % 0 for the z variables

lb = [lby(:);lbz(:)]; % Column vector lower bound

ub = ones(size(lb)); % Binary variables have lower bound 0, upper bound 1

Linear Constraints

For linear constraints A*x <= b, the number of columns in the A matrix must be the
same as the length of x, which is the same as the length of lb. To create rows of A of the
appropriate size, create zero matrices of the sizes of the y and z matrices.

cleary = zeros(nPeriods,nGens,2);

clearz = zeros(nPeriods,nGens);

To ensure that the power level has no more than one component equal to 1, set a linear
inequality constraint:

x(i,j,1) + x(i,j,2) <= 1

A = spalloc(nPeriods*nGens,length(lb),2*nPeriods*nGens); % nPeriods*nGens inequalities

counter = 1;

for ii = 1:nPeriods

 for jj = 1:nGens

 Optimal Dispatch of Power Generators

8-77

 temp = cleary;

 temp(ii,jj,:) = 1;

 addrow = [temp(:);clearz(:)]';

 A(counter,:) = sparse(addrow);

 counter = counter + 1;

 end

end

b = ones(nPeriods*nGens,1); % A*x <= b means no more than one of x(i,j,1) and x(i,j,2) are equal to 1

The running cost per period is the cost for fuel for that period. For generator j operating
at level k, the cost is fuelPrice * fuel(j,k).

To ensure that the generators do not use too much fuel, create an inequality constraint
on the sum of fuel usage.

yFuel = lby; % Initialize fuel usage array

yFuel(:,1,1) = fuel(1,1); % Fuel use of generator 1 in low setting

yFuel(:,1,2) = fuel(1,2); % Fuel use of generator 1 in high setting

yFuel(:,2,1) = fuel(2,1); % Fuel use of generator 2 in low setting

yFuel(:,2,2) = fuel(2,2); % Fuel use of generator 2 in high setting

addrow = [yFuel(:);clearz(:)]';

A = [A;sparse(addrow)];

b = [b;totalfuel]; % A*x <= b means the total fuel usage is <= totalfuel

Set the Generator Startup Indicator Variables

How can you get the solver to set the z variables automatically to match the active/off
periods that the y variables represent? Recall that the condition to satisfy is z(i,j) = 1
exactly when

sum_k y(i,j,k) = 0 and sum_k y(i+1,j,k) = 1.

Notice that

sum_k (- y(i,j,k) + y(i+1,j,k)) > 0 exactly when you want z(i,j) = 1.

Therefore, include the the linear inequality constraints

sum_k (- y(i,j,k) + y(i+1,j,k)) - z(i,j) < = 0

in the problem formulation, and include the z variables in the objective function cost. By
including the z variables in the objective function, the solver attempts to lower the values

8 Linear Programming and Mixed-Integer Linear Programming

8-78

of the z variables, meaning it tries to set them all equal to 0. But for those intervals
when a generator turns on, the linear inequality forces the z(i,j) to equal 1.

Add extra rows to the linear inequality constraint matrix A to represent these new
inequalities. Wrap around the time so that interval 1 logically follows interval 48.

tempA = spalloc(nPeriods*nGens,length(lb),2*nPeriods*nGens);

counter = 1;

for ii = 1:nPeriods

 for jj = 1:nGens

 temp = cleary;

 tempy = clearz;

 temp(ii,jj,1) = -1;

 temp(ii,jj,2) = -1;

 if ii < nPeriods % Intervals 1 to 47

 temp(ii+1,jj,1) = 1;

 temp(ii+1,jj,2) = 1;

 else % Interval 1 follows interval 48

 temp(1,jj,1) = 1;

 temp(1,jj,2) = 1;

 end

 tempy(ii,jj) = -1;

 temp = [temp(:);tempy(:)]'; % Row vector for inclusion in tempA matrix

 tempA(counter,:) = sparse(temp);

 counter = counter + 1;

 end

end

A = [A;tempA];

b = [b;zeros(nPeriods*nGens,1)]; % A*x <= b sets z(i,j) = 1 at generator startup

Sparsity of Constraints

If you have a large problem, using sparse constraint matrices saves memory, and can
save computational time as well. The constraint matrix A is quite sparse:

filledfraction = nnz(A)/numel(A)

filledfraction =

 0.0155

intlinprog accepts sparse linear constraint matrices A and Aeq, but requires their
corresponding vector constraints b and beq to be full.

 Optimal Dispatch of Power Generators

8-79

Define Objective

The objective function includes fuel costs for running the generators, revenue from
running the generators, and costs for starting the generators.

generatorlevel = lby; % Generation in MW, start with 0s

generatorlevel(:,1,1) = gen(1,1); % Fill in the levels

generatorlevel(:,1,2) = gen(1,2);

generatorlevel(:,2,1) = gen(2,1);

generatorlevel(:,2,2) = gen(2,2);

Incoming revenue = x.*generatorlevel.*poolPrice

revenue = generatorlevel; % Allocate revenue array

for ii = 1:nPeriods

 revenue(ii,:,:) = poolPrice(ii)*generatorlevel(ii,:,:);

end

Total fuel cost = y.*yFuel*fuelPrice

fuelCost = yFuel*fuelPrice;

Startup cost = z.*ones(size(z))*startCost

starts = (clearz + 1)*startCost;

starts = starts(:); % Generator startup cost vector

The vector x = [y(:);z(:)]. Write the total profit in terms of x:

profit = Incoming revenue - Total fuel cost - Startup cost

f = [revenue(:) - fuelCost(:);-starts]; % f is the objective function vector

Solve the Problem

To save space, suppress iterative display.

options = optimoptions('intlinprog','Display','final');

[x,fval,eflag,output] = intlinprog(-f,1:length(f),A,b,[],[],lb,ub,options);

Optimal solution found.

8 Linear Programming and Mixed-Integer Linear Programming

8-80

Intlinprog stopped because the objective value is within a gap tolerance of the

optimal value, options.TolGapAbs = 0 (the default value). The intcon variables

are integer within tolerance, options.TolInteger = 1e-05 (the default value).

Examine the Solution

The easiest way to examine the solution is dividing the solution vector x into its two
components, y and z.

ysolution = x(1:nPeriods*nGens*2);

zsolution = x(nPeriods*nGens*2+1:end);

ysolution = reshape(ysolution,[nPeriods,nGens,2]);

zsolution = reshape(zsolution,[nPeriods,nGens]);

Plot the solution as a function of time.

subplot(3,1,1)

bar(ysolution(:,1,1)*gen(1,1)+ysolution(:,1,2)*gen(1,2),.5,'g')

xlim([.5,48.5])

ylabel('MWh')

title('Generator 1 optimal schedule','FontWeight','bold')

subplot(3,1,2)

bar(ysolution(:,2,1)*gen(1,1)+ysolution(:,2,2)*gen(1,2),.5,'c')

title('Generator 2 optimal schedule','FontWeight','bold')

xlim([.5,48.5])

ylabel('MWh')

subplot(3,1,3)

bar(poolPrice,.5)

xlim([.5,48.5])

title('Energy price','FontWeight','bold')

xlabel('Period')

ylabel('$ / MWh')

 Optimal Dispatch of Power Generators

8-81

Generator 2 runs longer than generator 1, which you would expect because it is more
efficient. Generator 2 runs at its high power level whenever it is on. Generator 1 runs
mainly at its high power level, but dips down to low power for one time unit. Each
generator runs for one contiguous set of periods daily, so incurs only one startup cost.

Check that the z variable is 1 for the periods when the generators start.

starttimes = find(round(zsolution) == 1); % Use round for noninteger results

[theperiod,thegenerator] = ind2sub(size(zsolution),starttimes)

theperiod =

 23

8 Linear Programming and Mixed-Integer Linear Programming

8-82

 16

thegenerator =

 1

 2

The periods when the generators start match the plots.

Compare to Lower Penalty for Startup

If you choose a small value of startCost, the solution involves multiple generation
periods.

startCost = 500; % Choose a lower penalty for starting the generators

starts = (clearz + 1)*startCost;

starts = starts(:); % Start cost vector

fnew = [revenue(:) - fuelCost(:);-starts]; % New objective function

[xnew,fvalnew,eflagnew,outputnew] = ...

 intlinprog(-fnew,1:length(fnew),A,b,[],[],lb,ub,options);

ysolutionnew = xnew(1:nPeriods*nGens*2);

zsolutionnew = xnew(nPeriods*nGens*2+1:end);

ysolutionnew = reshape(ysolutionnew,[nPeriods,nGens,2]);

zsolutionnew = reshape(zsolutionnew,[nPeriods,nGens]);

subplot(3,1,1)

bar(ysolutionnew(:,1,1)*gen(1,1)+ysolutionnew(:,1,2)*gen(1,2),.5,'g')

xlim([.5,48.5])

ylabel('MWh')

title('Generator 1 optimal schedule','FontWeight','bold')

subplot(3,1,2)

bar(ysolutionnew(:,2,1)*gen(1,1)+ysolutionnew(:,2,2)*gen(1,2),.5,'c')

title('Generator 2 optimal schedule','FontWeight','bold')

xlim([.5,48.5])

ylabel('MWh')

subplot(3,1,3)

bar(poolPrice,.5)

xlim([.5,48.5])

title('Energy price','FontWeight','bold')

xlabel('Period')

ylabel('$ / MWh')

 Optimal Dispatch of Power Generators

8-83

starttimes = find(round(zsolutionnew) == 1); % Use round for noninteger results

[theperiod,thegenerator] = ind2sub(size(zsolution),starttimes)

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the

optimal value, options.TolGapAbs = 0 (the default value). The intcon variables

are integer within tolerance, options.TolInteger = 1e-05 (the default value).

theperiod =

 22

 16

 45

thegenerator =

 1

 2

 2

8 Linear Programming and Mixed-Integer Linear Programming

8-84

 Mixed-Integer Quadratic Programming Portfolio Optimization

8-85

Mixed-Integer Quadratic Programming Portfolio Optimization

This example shows how to solve a Mixed-Integer Quadratic Programming (MIQP)
portfolio optimization problem using the intlinprog Mixed-Integer Linear
Programming (MILP) solver. The idea is to iteratively solve a sequence of MILP problems
that locally approximate the MIQP problem.

Problem Outline

As Markowitz showed ("Portfolio Selection," J. Finance Volume 7, Issue 1, pp. 77-91,
March 1952), you can express many portfolio optimization problems as quadratic
programming problems. Suppose that you have a set of N assets and want to choose a
portfolio, with being the fraction of your investment that is in asset . If you know
the vector of mean returns of each asset, and the covariance matrix of the returns,
then for a given level of risk-aversion you maximize the risk-adjusted expected return:

The quadprog solver addresses this quadratic programming problem. However, in
addition to the plain quadratic programming problem, you might want to restrict a
portfolio in a variety of ways, such as:

• Having no more than M assets in the portfolio, where M <= N.
• Having at least m assets in the portfolio, where 0 < m <= M.
• Having semicontinuous constraints, meaning either , or

for some fixed fractions and .

You cannot include these constraints in quadprog. The difficulty is the discrete nature
of the constraints. Furthermore, while the mixed-integer linear programming solver
intlinprog does handle discrete constraints, it does not address quadratic objective
functions.

This example constructs a sequence of MILP problems that satisfy the constraints, and
that increasingly approximate the quadratic objective function. While this technique
works for this example, it might not apply to different problem or constraint types.

Begin by modeling the constraints.

8 Linear Programming and Mixed-Integer Linear Programming

8-86

Modeling Discrete Constraints

 is the vector of asset allocation fractions, with for each . To model the
number of assets in the portfolio, you need indicator variables such that when

, and when . To get variables that satisfy this restriction, set
the vector to be a binary variable, and impose the linear constraints

These inequalities both enforce that and are zero at exactly the same time, and
they also enforce that whenever .

Also, to enforce the constraints on the number of assets in the portfolio, impose the linear
constraints

Objective and Successive Linear Approximations

As first formulated, you try to maximize the objective function. However, all
Optimization Toolbox™ solvers minimize. So formulate the problem as minimizing the
negative of the objective:

This objective function is nonlinear. The intlinprog MILP solver requires a linear
objective function. There is a standard technique to reformulate this problem into one
with linear objective and nonlinear constraints. Introduce a slack variable to represent
the quadratic term.

As you iteratively solve MILP approximations, you include new linear constraints,
each of which approximates the nonlinear constraint locally near the current point. In
particular, for where is a constant vector and is a variable vector, the
first-order Taylor approximation to the constraint is

 Mixed-Integer Quadratic Programming Portfolio Optimization

8-87

Replacing by gives

For each intermediate solution you introduce a new linear constraint in and as the
linear part of the expression above:

This has the form , where , there is a multiplier for the term, and

.

This method of adding new linear constraints to the problem is called a cutting plane
method. For details, see J. E. Kelley, Jr. "The Cutting-Plane Method for Solving Convex
Programs." J. Soc. Indust. Appl. Math. Vol. 8, No. 4, pp. 703-712, December, 1960.

MATLAB® Problem Formulation

To express problems for the intlinprog solver, you need to do the following:

• Decide what your variables represent
• Express lower and upper bounds in terms of these variables
• Give linear equality and inequality matrices

Have the first variables represent the vector, the next variables represent the
binary vector, and the final variable represent the slack variable. There are
variables in the problem.

Load the data for the problem. This data has 225 expected returns in the vector r and
the covariance of the returns in the 225-by-225 matrix Q. The data is the same as in the
Using Quadratic Programming on Portfolio Optimization Problems example.

load port5

r = mean_return;

Q = Correlation .* (stdDev_return * stdDev_return');

Set the number of assets as N.

8 Linear Programming and Mixed-Integer Linear Programming

8-88

N = length(r);

Set indexes for the variables

xvars = 1:N;

vvars = N+1:2*N;

zvar = 2*N+1;

The lower bounds of all the 2N+1 variables in the problem are zero. The upper bounds of
the first 2N variables are one, and the last variable has no upper bound.

lb = zeros(2*N+1,1);

ub = ones(2*N+1,1);

ub(zvar) = Inf;

Set the number of assets in the solution to be between 100 and 150. Incorporate this
constraint into the problem in the form, namely

by writing two linear constraints of the form :

M = 150;

m = 100;

A = zeros(1,2*N+1); % Allocate A matrix

A(vvars) = 1; % A*x represents the sum of the v(i)

A = [A;-A];

b = zeros(2,1); % Allocate b vector

b(1) = M;

b(2) = -m;

Include semicontinuous constraints. Take the minimal nonzero fraction of assets to be
0.001 for each asset type, and the maximal fraction to be 0.05.

fmin = 0.001;

 Mixed-Integer Quadratic Programming Portfolio Optimization

8-89

fmax = 0.05;

Include the inequalities and as linear
inequalities.

Atemp = eye(N);

Amax = horzcat(Atemp,-Atemp*fmax,zeros(N,1));

A = [A;Amax];

b = [b;zeros(N,1)];

Amin = horzcat(-Atemp,Atemp*fmin,zeros(N,1));

A = [A;Amin];

b = [b;zeros(N,1)];

Include the constraint that the portfolio is 100% invested, meaning .

Aeq = zeros(1,2*N+1); % Allocate Aeq matrix

Aeq(xvars) = 1;

beq = 1;

Set the risk-aversion coefficient to 100.

lambda = 100;

Define the objective function as a vector. Include zeros for the multipliers of the
 variables.

f = [-r;zeros(N,1);lambda];

Solve the Problem

To solve the problem iteratively, begin by solving the problem with the current
constraints, which do not yet reflect any linearization. The integer constraints are in the
vvars vector.

options = optimoptions(@intlinprog,'Display','off'); % Suppress iterative display

[xLinInt,fval,exitFlagInt,output] = intlinprog(f,vvars,A,b,Aeq,beq,lb,ub,options);

Prepare a stopping condition for the iterations: stop when the slack variable is within
0.01% of the true quadratic value.

thediff = 1e-4;

iter = 1; % iteration counter

assets = xLinInt(xvars); % the x variables

truequadratic = assets'*Q*assets;

8 Linear Programming and Mixed-Integer Linear Programming

8-90

zslack = xLinInt(zvar); % slack variable value

Keep a history of the computed true quadratic and slack variables for plotting.

history = [truequadratic,zslack];

Compute the quadratic and slack values. If they differ, then add another linear
constraint and solve again.

In toolbox syntax, each new linear constraint comes from the linear
approximation

You see that the new row of and the new element in , with the
term represented by a -1 coefficient in .

After you find a new solution, use a linear constraint halfway between the old and new
solutions. This heuristic way of including linear constraints can be faster than simply
taking the new solution. To use the solution instead of the halfway heuristic, comment
the "Midway" line below, and uncomment the following one.

while abs((zslack - truequadratic)/truequadratic) > thediff % relative error

 newArow = horzcat(2*assets'*Q,zeros(1,N),-1); % Linearized constraint

 A = [A;newArow];

 b = [b;truequadratic];

 % Solve the problem with the new constraints

 [xLinInt,fval,exitFlagInt,output] = intlinprog(f,vvars,A,b,Aeq,beq,lb,ub,options);

 assets = (assets+xLinInt(xvars))/2; % Midway from the previous to the current

% assets = xLinInt(xvars); % Use the previous line or this one

 truequadratic = assets'*Q*assets;

 zslack = xLinInt(zvar);

 history = [history;truequadratic,zslack];

 iter = iter + 1;

end

Examine the Solution and Convergence Rate

Plot the history of the slack variable and the quadratic part of the objective function to
see how they converged.

plot(history)

 Mixed-Integer Quadratic Programming Portfolio Optimization

8-91

legend('Quadratic','Slack')

xlabel('Iteration number')

title('Quadratic and linear approximation (slack)')

What is the quality of the MILP solution? The output structure contains that
information. Examine the absolute gap between the internally-calculated bounds on the
objective at the solution.

disp(output.absolutegap)

 0

The absolute gap is zero, indicating that the MILP solution is accurate.

8 Linear Programming and Mixed-Integer Linear Programming

8-92

Plot the optimal allocation. Use xLinInt(xvars), not assets, because assets might
not satisfy the constraints when using the midway update.

bar(xLinInt(xvars))

grid on

xlabel('Asset index')

ylabel('Proportion of investment')

title('Optimal asset allocation')

You can easily see that all nonzero asset allocations are between the semicontinuous
bounds and .

How many nonzero assets are there? The constraint is that there are between 100 and
150 nonzero assets.

 Mixed-Integer Quadratic Programming Portfolio Optimization

8-93

sum(xLinInt(vvars))

ans =

 100

What is the expected return for this allocation, and the value of the risk-adjusted return?

fprintf('The expected return is %g, and the risk-adjusted return is %g.\n',...

 r'*xLinInt(xvars),-fval)

The expected return is 0.000616464, and the risk-adjusted return is -0.0360334.

More elaborate analyses are possible by using features specifically designed for portfolio
optimization in Financial Toolbox™.

8 Linear Programming and Mixed-Integer Linear Programming

8-94

Solve Sudoku Puzzles Via Integer Programming

This example shows how to solve a Sudoku puzzle using binary integer programming.

You probably have seen Sudoku puzzles. A puzzle is to fill a 9-by-9 grid with integers
from 1 through 9 so that each integer appears only once in each row, column, and major
3-by-3 square. The grid is partially populated with clues, and your task is to fill in the
rest of the grid.

Initial Puzzle

Here is a data matrix B of clues. The first row, B(1,2,2), means row 1, column 2 has a
clue 2. The second row, B(1,5,3), means row 1, column 5 has a clue 3. Here is the entire
matrix B.

B = [1,2,2;

 1,5,3;

 1,8,4;

 2,1,6;

 2,9,3;

 3,3,4;

 3,7,5;

 4,4,8;

 4,6,6;

 5,1,8;

 5,5,1;

 5,9,6;

 6,4,7;

 6,6,5;

 7,3,7;

 7,7,6;

 8,1,4;

 8,9,8;

 9,2,3;

 9,5,4;

 9,8,2];

drawSudoku(B) % For the listing of this program, see the end of this example.

 Solve Sudoku Puzzles Via Integer Programming

8-95

This puzzle, and an alternative MATLAB® solution technique, was featured in Cleve's
Corner in 2009.

There are many approaches to solving Sudoku puzzles manually, as well as many
programmatic approaches. This example shows a straightforward approach using binary
integer programming.

This approach is particularly simple because you do not give a solution algorithm. Just
express the rules of Sudoku, express the clues as constraints on the solution, and then
intlinprog produces the solution.

http://www.mathworks.com/company/newsletters/articles/solving-sudoku-with-matlab.html
http://www.mathworks.com/company/newsletters/articles/solving-sudoku-with-matlab.html

8 Linear Programming and Mixed-Integer Linear Programming

8-96

Binary Integer Programming Approach

The key idea is to transform a puzzle from a square 9-by-9 grid to a cubic 9-by-9-by-9
array of binary values (0 or 1). Think of the cubic array as being 9 square grids stacked
on top of each other. The top grid, a square layer of the array, has a 1 wherever the
solution or clue has a 1. The second layer has a 1 wherever the solution or clue has a 2.
The ninth layer has a 1 wherever the solution or clue has a 9.

This formulation is precisely suited for binary integer programming.

The objective function is not needed here, and might as well be 0. The problem is really
just to find a feasible solution, meaning one that satisfies all the constraints. However,
for tiebreaking in the internals of the integer programming solver, giving increased
solution speed, use a nonconstant objective function.

Express the Rules for Sudoku as Constraints

Suppose a solution is represented in a 9-by-9-by-9 binary array. What properties does
have? First, each square in the 2-D grid (i,j) has exactly one value, so there is exactly one
nonzero element among the 3-D array entries . In other words, for
every and ,

Similarly, in each row of the 2-D grid, there is exactly one value out of each of the digits
from 1 to 9. In other words, for each and ,

And each column in the 2-D grid has the same property: for each and ,

The major 3-by-3 grids have a similar constraint. For the grid elements and
, and for each ,

To represent all nine major grids, just add 3 or 6 to each and index:

 where

 Solve Sudoku Puzzles Via Integer Programming

8-97

Express Clues

Each initial value (clue) can be expressed as a constraint. Suppose that the clue is

 for some . Then . The constraint ensures
that all other for .

Write the Rules for Sudoku

Although the Sudoku rules are conveniently expressed in terms of a 9-by-9-by-9 solution
array x, linear constraints are given in terms of a vector solution matrix x(:). Therefore,
when you write a Sudoku program, you have to use constraint matrices derived from 9-
by-9-by-9 initial arrays.

Here is one approach to set up Sudoku rules, and also include the clues as constraints.
The sudokuEngine file comes with your software.

type sudokuEngine

function [S,eflag] = sudokuEngine(B)

% This function sets up the rules for Sudoku. It reads in the puzzle

% expressed in matrix B, calls intlinprog to solve the puzzle, and returns

% the solution in matrix S.

%

% The matrix B should have 3 columns and at least 17 rows (because a Sudoku

% puzzle needs at least 17 entries to be uniquely solvable). The first two

% elements in each row are the i,j coordinates of a clue, and the third

% element is the value of the clue, an integer from 1 to 9. If B is a

% 9-by-9 matrix, the function first converts it to 3-column form.

% Copyright 2014 The MathWorks, Inc.

if isequal(size(B),[9,9]) % 9-by-9 clues

 % Convert to 81-by-3

 [SM,SN] = meshgrid(1:9); % make i,j entries

 B = [SN(:),SM(:),B(:)]; % i,j,k rows

 % Now delete zero rows

 [rrem,~] = find(B(:,3) == 0);

 B(rrem,:) = [];

end

if size(B,2) ~= 3 || length(size(B)) > 2

 error('The input matrix must be N-by-3 or 9-by-9')

8 Linear Programming and Mixed-Integer Linear Programming

8-98

end

if sum([any(B ~= round(B)),any(B < 1),any(B > 9)]) % enforces entries 1-9

 error('Entries must be integers from 1 to 9')

end

%% The rules of Sudoku:

N = 9^3; % number of independent variables in x, a 9-by-9-by-9 array

M = 4*9^2; % number of constraints, see the construction of Aeq

Aeq = zeros(M,N); % allocate equality constraint matrix Aeq*x = beq

beq = ones(M,1); % allocate constant vector beq

f = (1:N)'; % the objective can be anything, but having nonconstant f can speed the solver

lb = zeros(9,9,9); % an initial zero array

ub = lb+1; % upper bound array to give binary variables

counter = 1;

for j = 1:9 % one in each row

 for k = 1:9

 Astuff = lb; % clear Astuff

 Astuff(1:end,j,k) = 1; % one row in Aeq*x = beq

 Aeq(counter,:) = Astuff(:)'; % put Astuff in a row of Aeq

 counter = counter + 1;

 end

end

for i = 1:9 % one in each column

 for k = 1:9

 Astuff = lb;

 Astuff(i,1:end,k) = 1;

 Aeq(counter,:) = Astuff(:)';

 counter = counter + 1;

 end

end

for U = 0:3:6 % one in each square

 for V = 0:3:6

 for k = 1:9

 Astuff = lb;

 Astuff(U+(1:3),V+(1:3),k) = 1;

 Aeq(counter,:) = Astuff(:)';

 counter = counter + 1;

 end

 end

end

 Solve Sudoku Puzzles Via Integer Programming

8-99

for i = 1:9 % one in each depth

 for j = 1:9

 Astuff = lb;

 Astuff(i,j,1:end) = 1;

 Aeq(counter,:) = Astuff(:)';

 counter = counter + 1;

 end

end

%% Put the particular puzzle in the constraints

% Include the initial clues in the |lb| array by setting corresponding

% entries to 1. This forces the solution to have |x(i,j,k) = 1|.

for i = 1:size(B,1)

 lb(B(i,1),B(i,2),B(i,3)) = 1;

end

%% Solve the Puzzle

% The Sudoku problem is complete: the rules are represented in the |Aeq|

% and |beq| matrices, and the clues are ones in the |lb| array. Solve the

% problem by calling |intlinprog|. Ensure that the integer program has all

% binary variables by setting the intcon argument to |1:N|, with lower and

% upper bounds of 0 and 1.

intcon = 1:N;

[x,~,eflag] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub);

%% Convert the Solution to a Usable Form

% To go from the solution x to a Sudoku grid, simply add up the numbers at

% each (i,j) entry, multiplied by the depth at which the numbers appear:

if eflag > 0 % good solution

 x = reshape(x,9,9,9); % change back to a 9-by-9-by-9 array

 x = round(x); % clean up non-integer solutions

 y = ones(size(x));

 for k = 2:9

 y(:,:,k) = k; % multiplier for each depth k

 end

 S = x.*y; % multiply each entry by its depth

 S = sum(S,3); % S is 9-by-9 and holds the solved puzzle

else

8 Linear Programming and Mixed-Integer Linear Programming

8-100

 S = [];

end

Call the Sudoku Solver

S = sudokuEngine(B); % Solves the puzzle pictured at the start

drawSudoku(S)

LP: Optimal objective value is 29565.000000.

Cut Generation: Applied 1 strong CG cut,

 and 2 zero-half cuts.

 Lower bound is 29565.000000.

 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap

tolerance of the optimal value, options.TolGapAbs = 0 (the default value). The

intcon variables are integer within tolerance, options.TolInteger = 1e-05 (the

default value).

 Solve Sudoku Puzzles Via Integer Programming

8-101

You can easily check that the solution is correct.

Function to Draw the Sudoku Puzzle

type drawSudoku

function drawSudoku(B)

% Function for drawing the Sudoku board

% Copyright 2014 The MathWorks, Inc.

figure;hold on;axis off;axis equal % prepare to draw

8 Linear Programming and Mixed-Integer Linear Programming

8-102

rectangle('Position',[0 0 9 9],'LineWidth',3,'Clipping','off') % outside border

rectangle('Position',[3,0,3,9],'LineWidth',2) % heavy vertical lines

rectangle('Position',[0,3,9,3],'LineWidth',2) % heavy horizontal lines

rectangle('Position',[0,1,9,1],'LineWidth',1) % minor horizontal lines

rectangle('Position',[0,4,9,1],'LineWidth',1)

rectangle('Position',[0,7,9,1],'LineWidth',1)

rectangle('Position',[1,0,1,9],'LineWidth',1) % minor vertical lines

rectangle('Position',[4,0,1,9],'LineWidth',1)

rectangle('Position',[7,0,1,9],'LineWidth',1)

% Fill in the clues

%

% The rows of B are of the form (i,j,k) where i is the row counting from

% the top, j is the column, and k is the clue. To place the entries in the

% boxes, j is the horizontal distance, 10-i is the vertical distance, and

% we subtract 0.5 to center the clue in the box.

%

% If B is a 9-by-9 matrix, convert it to 3 columns first

if size(B,2) == 9 % 9 columns

 [SM,SN] = meshgrid(1:9); % make i,j entries

 B = [SN(:),SM(:),B(:)]; % i,j,k rows

end

for ii = 1:size(B,1)

 text(B(ii,2)-0.5,9.5-B(ii,1),num2str(B(ii,3)))

end

hold off

end

9

Quadratic Programming

• “Quadratic Programming Algorithms” on page 9-2
• “Quadratic Minimization with Bound Constraints” on page 9-16
• “Quadratic Minimization with Dense, Structured Hessian” on page 9-19
• “Large Sparse Quadratic Program with Interior Point Algorithm” on page 9-25

9 Quadratic Programming

9-2

Quadratic Programming Algorithms

In this section...

“Quadratic Programming Definition” on page 9-2
“interior-point-convex quadprog Algorithm” on page 9-2
“trust-region-reflective quadprog Algorithm” on page 9-6
“active-set quadprog Algorithm” on page 9-11

Quadratic Programming Definition

Quadratic programming is the problem of finding a vector x that minimizes a quadratic
function, possibly subject to linear constraints:

min
x

T T
x Hx c x

1

2
+

such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u.

interior-point-convex quadprog Algorithm

The interior-point-convex algorithm performs the following steps:

1. “Presolve/Postsolve” on page 9-2
2. “Generate Initial Point” on page 9-3
3. “Predictor-Corrector” on page 9-3
4. “Multiple Corrections” on page 9-5
5. “Total Relative Error” on page 9-6

Presolve/Postsolve

The algorithm begins by attempting to simplify the problem by removing redundancies
and simplifying constraints. The tasks performed during the presolve step include:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility,
and then fix and remove the variables.

 Quadratic Programming Algorithms

9-3

• Check if any linear inequality constraint involves just one variable. If so, check for
feasibility, and change the linear constraint to a bound.

• Check if any linear equality constraint involves just one variable. If so, check for
feasibility, and then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and
delete the rows.

• Check if the bounds and linear constraints are consistent.
• Check if any variables appear only as linear terms in the objective function and do not

appear in any linear constraint. If so, check for feasibility and boundedness, and fix
the variables at their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding
slack variables.

If algorithm detects an infeasible or unbounded problem, it halts and issues an
appropriate exit message.

The algorithm might arrive at a single feasible point, which represents the solution.

If the algorithm does not detect an infeasible or unbounded problem in the presolve step,
it continues, if necessary, with the other steps. At the end, the algorithm reconstructs the
original problem, undoing any presolve transformations. This final step is the postsolve
step.

For details, see Gould and Toint [63].

Generate Initial Point

The initial point x0 for the algorithm is:

1 Initialize x0 to ones(n,1), where n is the number of rows in H.
2 For components that have both an upper bound ub and a lower bound lb, if

a component of x0 is not strictly inside the bounds, the component is set to
(ub + lb)/2.

3 For components that have only one bound, modify the component if necessary to lie
strictly inside the bound.

Predictor-Corrector

Similar to the fmincon interior-point algorithm, the interior-point-convex
algorithm tries to find a point where the Karush-Kuhn-Tucker (KKT) conditions

9 Quadratic Programming

9-4

hold. For the quadratic programming problem described in “Quadratic Programming
Definition” on page 9-2, these conditions are:

Hx c A y A z

Ax b s

A x b

s z i m

s

z

eq
T T

eq eq

i i

+ - - =

- - =

- =

= =

≥

≥

0

0

0

0 1 2

0

, , ,...,

00.

Here

•
A is the extended linear inequality matrix that includes bounds written as linear

inequalities. b is the corresponding linear inequality vector, including bounds.
• s is the vector of slacks that convert inequality constraints to equalities. s has length

m, the number of linear inequalities and bounds.
• z is the vector of Lagrange multipliers corresponding to s.
• y is the vector of Lagrange multipliers associated with the equality constraints.

The algorithm first predicts a step from the Newton-Raphson formula, then computes a
corrector step. The corrector attempts to better enforce the nonlinear constraint sizi = 0.

Definitions for the predictor step:

• rd, the dual residual:

r Hx c A y A zd eq
T T

= + - - .

• req, the primal equality constraint residual:

r A x beq eq eq= - .

• rineq, the primal inequality constraint residual, which includes bounds and slacks:

r Ax b sineq = - - .

 Quadratic Programming Algorithms

9-5

• rsz, the complementarity residual:
rsz = Sz.

S is the diagonal matrix of slack terms, z is the column matrix of Lagrange
multipliers.

• rc, the average complementarity:

r
s z

m
c

T

= .

In a Newton step, the changes in x, s, y, and z, are given by:

H A A

A

A I

Z S

x

s

y

z

eq
T T

eq

0

0 0 0

0 0

0 0

- -

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜

D
D
D
D

˜̃

= -

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

r

r

r

r

d

eq

ineq

sz

.

However, a full Newton step might be infeasible, because of the positivity constraints on
s and z. Therefore, quadprog shortens the step, if necessary, to maintain positivity.

Additionally, to maintain a “centered” position in the interior, instead of trying to solve
sizi = 0, the algorithm takes a positive parameter σ, and tries to solve
sizi = σrc.

quadprog replaces rsz in the Newton step equation with rsz + ΔsΔz – σrc1, where 1 is the
vector of ones. Also, quadprog reorders the Newton equations to obtain a symmetric,
more numerically stable system for the predictor step calculation.

For details, see Mehrotra [47].

Multiple Corrections

After calculating the corrected Newton step, quadprog can perform more calculations to
get both a longer current step, and to prepare for better subsequent steps. These multiple
correction calculations can improve both performance and robustness. For details, see
Gondzio [62].

9 Quadratic Programming

9-6

Total Relative Error

quadprog calculates a merit function φ at every iteration. The merit function is a
measure of feasibility, and is also called total relative error. quadprog stops if the merit
function grows too large. In this case, quadprog declares the problem to be infeasible.

The merit function is related to the KKT conditions for the problem—see “Predictor-
Corrector” on page 9-3. Use the following definitions:

r = ()
= -

= - +

= + +

max , , , , , ,1 H A A c b b

r A x b

r Ax b s

r Hx c A

eq eq

eq eq eq

ineq

d eqq eq ineq

ineq eq eq

T T

T T T T

A

g x Hx f x b b

l l

l l

+

= + - - .

The notation A and b means the linear inequality coefficients, augmented with terms
to represent bounds. The notation lineq similarly represents Lagrange multipliers
for the linear inequality constraints, including bound constraints. This was called z in
“Predictor-Corrector” on page 9-3, and leq was called y.

The merit function φ is

1

r
max , , .r r r geq ineq d• • •() +()

quadprog iterative display includes a column showing the merit function under the
heading Total relative error.

trust-region-reflective quadprog Algorithm

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and
returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,

 Quadratic Programming Algorithms

9-7

move to a point with a lower function value. The basic idea is to approximate f with a
simpler function q, which reasonably reflects the behavior of function f in a neighborhood
N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min (), .
s

q s s N Œ{ }

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point
remains unchanged and N, the region of trust, is shrunk and the trial step computation
is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are
how to choose and compute the approximation q (defined at the current point x), how
to choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

min ,
1

2
s Hs s g DsT T+ £

Ï
Ì
Ó

¸
˝
˛

 such that D

where g is the gradient of f at the current point x, H is the Hessian matrix (the
symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a positive
scalar, and ∥ . ∥ is the 2-norm. Good algorithms exist for solving Equation 9-2 (see [48]);
such algorithms typically involve the computation of a full eigensystem and a Newton
process applied to the secular equation

1 1
0

D

- =

s

.

Such algorithms provide an accurate solution to Equation 9-2. However, they require
time proportional to several factorizations of H. Therefore, for large-scale problems a
different approach is needed. Several approximation and heuristic strategies, based on
Equation 9-2, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region

9 Quadratic Programming

9-8

subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 9-2 is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by
s1 and s2, where s1 is in the direction of the gradient g, and s2 is either an approximate
Newton direction, i.e., a solution to

H s g◊ = -2 ,

or a direction of negative curvature,

s H s
T

2 2
0◊ ◊ < .

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 9-2 to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is
adjusted according to standard rules. In particular, it is decreased if the trial step is not
accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares.
However, the underlying algorithmic ideas are the same as for the general case. These
special cases are discussed in later sections.

The subspace trust-region method is used to determine a search direction. However,
instead of restricting the step to (possibly) one reflection step, as in the nonlinear
minimization case, a piecewise reflective line search is conducted at each iteration. See
[45] for details of the line search.

 Quadratic Programming Algorithms

9-9

Preconditioned Conjugate Gradient Method

A popular way to solve large symmetric positive definite systems of linear equations
Hp = –g is the method of Preconditioned Conjugate Gradients (PCG). This iterative
approach requires the ability to calculate matrix-vector products of the form H·v where
v is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for
H. That is, M = C2, where C–1HC–1 is a well-conditioned matrix or a matrix with clustered
eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric.
However, H is guaranteed to be positive definite only in the neighborhood of a strong
minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is
encountered, i.e., dTHd ≤ 0. The PCG output direction, p, is either a direction of negative
curvature or an approximate (tol controls how approximate) solution to the Newton
system Hp = –g. In either case p is used to help define the two-dimensional subspace
used in the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2.

Linear Equality Constraints

Linear constraints complicate the situation described for unconstrained minimization.
However, the underlying ideas described previously can be carried through in a clean and
efficient way. The trust-region methods in Optimization Toolbox solvers generate strictly
feasible iterates.

The general linear equality constrained minimization problem can be written

min () ,f x Ax b such that ={ }

where A is an m-by-n matrix (m ≤ n). Some Optimization Toolbox solvers preprocess A to
remove strict linear dependencies using a technique based on the LU factorization of AT

[46]. Here A is assumed to be of rank m.

The method used to solve Equation 9-5 differs from the unconstrained approach in
two significant ways. First, an initial feasible point x0 is computed, using a sparse
least-squares step, so that Ax0 = b. Second, Algorithm PCG is replaced with Reduced
Preconditioned Conjugate Gradients (RPCG), see [46], in order to compute an
approximate reduced Newton step (or a direction of negative curvature in the null space
of A). The key linear algebra step involves solving systems of the form

9 Quadratic Programming

9-10

C A

A

s

t

rT%

% 0 0

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙,

where %A approximates A (small nonzeros of A are set to zero provided rank is not lost)
and C is a sparse symmetric positive-definite approximation to H, i.e., C = H. See [46] for
more details.

Box Constraints

The box constrained problem is of the form

min () ,f x l x u such that £ £{ }

where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of
the components of l can be equal to –∞ and some (or all) of the components of u can be
equal to ∞. The method generates a sequence of strictly feasible points. Two techniques
are used to maintain feasibility while achieving robust convergence behavior. First, a
scaled modified Newton step replaces the unconstrained Newton step (to define the two-
dimensional subspace S). Second, reflections are used to increase the step size.

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary
conditions for Equation 9-7,

D x g() ,() =
-2

0

where

D x vk() ,
/

= ()-
diag

1 2

and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li

• If gi < 0 and ui = ∞ then vi = –1
• If gi ≥ 0 and li = –∞ then vi = 1

 Quadratic Programming Algorithms

9-11

The nonlinear system Equation 9-8 is not differentiable everywhere. Nondifferentiability
occurs when vi = 0. You can avoid such points by maintaining strict feasibility, i.e.,
restricting l < x < u.

The scaled modified Newton step sk for the nonlinear system of equations given by
Equation 9-8 is defined as the solution to the linear system

ˆ ˆMDs gN
= -

at the kth iteration, where

ˆ ,
/

g D g v g= = ()-1 1 2
diag

and

ˆ () .M D HD g Jv
= +

- -1 1 diag

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the diagonal
matrix Jv equals 0, –1, or 1. If all the components of l and u are finite, Jv = diag(sign(g)).
At a point where gi = 0, vi might not be differentiable. J

ii

v
= 0 is defined at such a point.

Nondifferentiability of this type is not a cause for concern because, for such a component,
it is not significant which value vi takes. Further, |vi| will still be discontinuous at this
point, but the function |vi|·gi is continuous.

Second, reflections are used to increase the step size. A (single) reflection step is defined
as follows. Given a step p that intersects a bound constraint, consider the first bound
constraint crossed by p; assume it is the ith bound constraint (either the ith upper or
ith lower bound). Then the reflection step pR = p except in the ith component, where
pR

i = –pi.

active-set quadprog Algorithm

Recall the problem quadprog addresses:

min
x

T T
x Hx c x

1

2
+

9 Quadratic Programming

9-12

such that A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u. m is the total number of linear constraints,
the sum of number of rows of A and of Aeq.

The quadprog active-set algorithm is an active-set strategy (also known as a
projection method) similar to that of Gill et al., described in [18] and [17]. It has been
modified for both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of
a feasible point (if one exists). The second phase involves the generation of an iterative
sequence of feasible points that converge to the solution.

Active Set Iterations

In this method an active set matrix, Sk, is maintained that is an estimate of the active
constraints (i.e., those that are on the constraint boundaries) at the solution point.
Specifically, the active set Sk consists of the rows of Aeq, and a subset of the rows of
A. Sk is updated at each iteration k, and is used to form a basis for a search direction
dk. Equality constraints always remain in the active set Sk. The search direction dk is
calculated and minimizes the objective function while remaining on active constraint
boundaries. The feasible subspace for dk is formed from a basis Zk whose columns are
orthogonal to the estimate of the active set Sk (i.e., SkZk = 0). Thus a search direction,
which is formed from a linear summation of any combination of the columns of Zk, is
guaranteed to remain on the boundaries of the active constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition of the

matrix Sk
T , where l is the number of active constraints and l < m. That is, Zk is given by

Z Q l mk = +[]:, : ,1

where

Q S
RT

k
T =

È

Î
Í

˘

˚
˙

0
.

Once Zk is found, a search direction dk is sought that minimizes the objective function
at dk, where dk is in the null space of the active constraints. That is, dk is a linear
combination of the columns of Zk: dk = Zkp for some vector p.

 Quadratic Programming Algorithms

9-13

Then if you view the quadratic objective function as a function of p, by substituting for dk,
the result is

q p p Z HZ p c Z pT
k
T

k
T

k() .= +

1

2

Differentiating this with respect to p yields

—q p Z HZ p Z ck
T

k k
T

() .= +

∇q(p) is referred to as the projected gradient of the quadratic function because it is
the gradient projected in the subspace defined by Zk. The term Z HZk

T
k is called the

projected Hessian. Assuming the Hessian matrix H is positive definite, the minimum
of the function q(p) in the subspace defined by Zk occurs when ∇q(p) = 0, which is the
solution of the system of linear equations

Z HZ p Z ck
T

k k
T

= - .

The next step is

x x d d Z pk k k k k
T

+
= + =1 a , . where

At each iteration, because of the quadratic nature of the objective function, there are only
two choices of step length α. A step of unity along dk is the exact step to the minimum
of the function restricted to the null space of Sk. If such a step can be taken, without
violation of the constraints, then this is the solution to QP (Equation 9-12). Otherwise,
the step along dk to the nearest constraint is less than unity and a new constraint is
included in the active set at the next iteration. The distance to the constraint boundaries
in any direction dk is given by

a =
- -()Ï

Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂Œ{ }
min ,

,...,i m

i k i

i k

A x b

A d1

which is defined for constraints not in the active set, and where the direction dk is
towards the constraint boundary, i.e., A d i mi k > =0 1, , ..., .

9 Quadratic Programming

9-14

Lagrange multipliers, λk, are calculated that satisfy the nonsingular set of linear
equations

S ck
T

kl = .

If all elements of λk are positive, xk is the optimal solution of QP (Equation 9-12).
However, if any component of λk is negative, and the component does not correspond to
an equality constraint, then the corresponding element is deleted from the active set and
a new iterate is sought.

Initialization

The algorithm requires a feasible point to start. If the initial point is not feasible, then
you can find a feasible point by solving the linear programming problem

min

, , ...,

,g
g

Œ¬ Œ¬

= =

 such that

 (the rows

x

i i e

n

A x b i m1 oof

 (the rows of

Aeq

A x b i m m Ai i e

)

, , ...,).- £ = +g 1

The notation Ai indicates the ith row of the matrix A. You can find a feasible point (if one
exists) to Equation 9-20 by setting x to a value that satisfies the equality constraints. You
can determine this value by solving an under- or overdetermined set of linear equations
formed from the set of equality constraints. If there is a solution to this problem, the
slack variable γ is set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the search
direction d to the steepest descent direction at each iteration, where gk is the gradient of
the objective function (equal to the coefficients of the linear objective function):

d Z Z gk k
T

k= - .

If a feasible point is found using the preceding LP method, the main QP phase is entered.
The search direction dk is initialized with a search direction d1 found from solving the set
of linear equations

Hd gk1 = - ,

 Quadratic Programming Algorithms

9-15

where gk is the gradient of the objective function at the current iterate xk (i.e., Hxk + c).

9 Quadratic Programming

9-16

Quadratic Minimization with Bound Constraints

To minimize a large-scale quadratic with upper and lower bounds, you can use the
quadprog function with the 'trust-region-reflective' algorithm.

The problem stored in the MAT-file qpbox1.mat is a positive definite quadratic, and the
Hessian matrix H is tridiagonal, subject to upper (ub) and lower (lb) bounds.

Step 1: Load the Hessian and define f, lb, and ub.

load qpbox1 % Get H

lb = zeros(400,1); lb(400) = -inf;

ub = 0.9*ones(400,1); ub(400) = inf;

f = zeros(400,1); f([1 400]) = -2;

Step 2: Call a quadratic minimization routine with a starting point xstart.

xstart = 0.5*ones(400,1);

options = optimoptions('quadprog','Algorithm','trust-region-reflective');

[x,fval,exitflag,output] = ...

 quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Looking at the resulting values of exitflag and output,

exitflag,output

exitflag =

 3

output =

 algorithm: 'trust-region-reflective'

 iterations: 19

 constrviolation: 0

 firstorderopt: 8.3903e-06

 cgiterations: 1673

 message: 'Optimization terminated: relative function value changing by le…'

You can see that while convergence occurred in 20 iterations, the high number of CG
iterations indicates that the cost of the linear system solve is high. In light of this cost,
one strategy would be to limit the number of CG iterations per optimization iteration.
The default number is the dimension of the problem divided by two, 200 for this problem.
Suppose you limit it to 50 using the MaxPCGIter flag in options:

 Quadratic Minimization with Bound Constraints

9-17

options = optimoptions(options,'MaxPCGIter',50);

[x,fval,exitflag,output] = ...

 quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

This time convergence still occurs and the total number of CG iterations (1547) has
dropped:

exitflag,output

exitflag =

 3

output =

 algorithm: 'trust-region-reflective'

 iterations: 36

 constrviolation: 0

 firstorderopt: 2.3821e-05

 cgiterations: 1547

 message: 'Optimization terminated: relative function value changing by le…'

A second strategy would be to use a direct solver at each iteration by setting the
PrecondBandWidth option to inf:

options = optimoptions(options,'PrecondBandWidth',inf);

[x,fval,exitflag,output] = ...

 quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Now the number of iterations has dropped to 10:

exitflag,output

exitflag =

 3

output =

 algorithm: 'trust-region-reflective'

 iterations: 10

 constrviolation: 0

 firstorderopt: 2.8219e-06

 cgiterations: 0

 message: 'Optimization terminated: relative function value changing by le…'

Using a direct solver at each iteration usually causes the number of iterations to
decrease, but often takes more time per iteration. For this problem, the tradeoff is
beneficial, as the time for quadprog to solve the problem decreases by a factor of 10.

9 Quadratic Programming

9-18

You can also use the default 'interior-point-convex' algorithm to solve this convex
problem:

options = optimoptions('quadprog','Algorithm','interior-point-convex');

[x,fval,exitflag,output] = ...

 quadprog(H,f,[],[],[],[],lb,ub,[],options);

Check the exit flag and output structure:

exitflag,output

exitflag =

 1

output =

 message: 'Minimum found that satisfies the constraints.…'

 algorithm: 'interior-point-convex'

 firstorderopt: 1.4120e-06

 constrviolation: 0

 iterations: 8

 cgiterations: []

 Quadratic Minimization with Dense, Structured Hessian

9-19

Quadratic Minimization with Dense, Structured Hessian

In this section...

“Take advantage of a structured Hessian” on page 9-19
“Step 1: Decide what part of H to pass to quadprog as the first argument.” on page
9-20
“Step 2: Write a function to compute Hessian-matrix products for H.” on page 9-20
“Step 3: Call a quadratic minimization routine with a starting point.” on page 9-21
“Preconditioning” on page 9-22

Take advantage of a structured Hessian

The quadprog trust-region-reflective method can solve large problems where the
Hessian is dense but structured. For these problems, quadprog does not compute H*Y
with the Hessian H directly, as it does for active-set problems and for trust-region-
reflective problems with sparse H, because forming H would be memory-intensive.
Instead, you must provide quadprog with a function that, given a matrix Y and
information about H, computes W = H*Y.

In this example, the Hessian matrix H has the structure H = B + A*A' where B is a
sparse 512-by-512 symmetric matrix, and A is a 512-by-10 sparse matrix composed of
a number of dense columns. To avoid excessive memory usage that could happen by
working with H directly because H is dense, the example provides a Hessian multiply
function, qpbox4mult. This function, when passed a matrix Y, uses sparse matrices A
and B to compute the Hessian matrix product W = H*Y = (B + A*A')*Y.

In the first part of this example, the matrices A and B need to be provided to the Hessian
multiply function qpbox4mult. You can pass one matrix as the first argument to
quadprog, which is passed to the Hessian multiply function. You can use a nested
function to provide the value of the second matrix.

The second part of the example shows how to tighten the TolPCG tolerance to
compensate for an approximate preconditioner instead of an exact H matrix.

9 Quadratic Programming

9-20

Step 1: Decide what part of H to pass to quadprog as the first argument.

Either A or B can be passed as the first argument to quadprog. The example chooses
to pass B as the first argument because this results in a better preconditioner (see
“Preconditioning” on page 9-22).

quadprog(B,f,[],[],[],[],l,u,xstart,options)

Step 2: Write a function to compute Hessian-matrix products for H.

Now, define a function runqpbox4 that

• Contains a nested function qpbox4mult that uses A and B to compute the Hessian
matrix product W, where W = H*Y = (B + A*A')*Y. The nested function must have
the form

W = qpbox4mult(Hinfo,Y,...)

The first two arguments Hinfo and Y are required.
• Loads the problem parameters from qpbox4.mat.
• Uses optimoptions to set the HessMult option to a function handle that points to

qpbox4mult.
• Calls quadprog with B as the first argument.

The first argument to the nested function qpbox4mult must be the same as the first
argument passed to quadprog, which in this case is the matrix B.

The second argument to qpbox4mult is the matrix Y (of W = H*Y). Because quadprog
expects Y to be used to form the Hessian matrix product, Y is always a matrix with n
rows, where n is the number of dimensions in the problem. The number of columns in
Y can vary. The function qpbox4mult is nested so that the value of the matrix A comes
from the outer function. Optimization Toolbox software includes the runqpbox4.m file.

function [fval, exitflag, output, x] = runqpbox4

%RUNQPBOX4 demonstrates 'HessMult' option for QUADPROG with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f

xstart = problem.xstart; u = problem.u; l = problem.l;

B = problem.B; A = problem.A; f = problem.f;

mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested function

 Quadratic Minimization with Dense, Structured Hessian

9-21

% Choose algorithm and the HessMult option

options = optimoptions(@quadprog,'Algorithm','trust-region-reflective','HessMult',mtxmpy);

% Pass B to qpbox4mult via the H argument. Also, B will be used in

% computing a preconditioner for PCG.

[x, fval, exitflag, output] = quadprog(B,f,[],[],[],[],l,u,xstart,options);

 function W = qpbox4mult(B,Y)

 %QPBOX4MULT Hessian matrix product with dense structured Hessian.

 % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where

 % INPUT:

 % B - sparse square matrix (512 by 512)

 % Y - vector (or matrix) to be multiplied by B + A'*A.

 % VARIABLES from outer function runqpbox4:

 % A - sparse matrix with 512 rows and 10 columns.

 %

 % OUTPUT:

 % W - The product (B + A*A')*Y.

 %

 % Order multiplies to avoid forming A*A',

 % which is large and dense

 W = B*Y + A*(A'*Y);

 end

end

Step 3: Call a quadratic minimization routine with a starting point.

To call the quadratic minimizing routine contained in runqpbox4, enter

[fval,exitflag,output] = runqpbox4;

to run the preceding code. Then display the values for fval, exitflag, and output. The
results are

Optimization terminated: relative function value changing by

less than sqrt(OPTIONS.TolFun), no negative curvature detected

in current trust region model and the rate of progress (change

in f(x)) is slow.

fval,exitflag,output

fval =

9 Quadratic Programming

9-22

 -1.0538e+03

exitflag =

 3

output =

 algorithm: 'trust-region-reflective'

 iterations: 18

 constrviolation: 0

 firstorderopt: 0.0043

 cgiterations: 30

 message: 'Optimization terminated: relative function value changing by le…'

After 18 iterations with a total of 30 PCG iterations, the function value is reduced to

fval

fval =

 -1.0538e+003

and the first-order optimality is

output.firstorderopt

ans =

 0.0043

Preconditioning

Sometimes quadprog cannot use H to compute a preconditioner because H only exists
implicitly. Instead, quadprog uses B, the argument passed in instead of H, to compute a
preconditioner. B is a good choice because it is the same size as H and approximates H to
some degree. If B were not the same size as H, quadprog would compute a preconditioner
based on some diagonal scaling matrices determined from the algorithm. Typically, this
would not perform as well.

Because the preconditioner is more approximate than when H is available explicitly,
adjusting the TolPCG parameter to a somewhat smaller value might be required. This
example is the same as the previous one, but reduces TolPCG from the default 0.1 to
0.01.

function [fval, exitflag, output, x] = runqpbox4prec

%RUNQPBOX4PREC demonstrates 'HessMult' option for QUADPROG with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f

 Quadratic Minimization with Dense, Structured Hessian

9-23

xstart = problem.xstart; u = problem.u; l = problem.l;

B = problem.B; A = problem.A; f = problem.f;

mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested function

% Choose algorithm, the HessMult option, and override the TolPCG option

options = optimoptions(@quadprog,'Algorithm','trust-region-reflective',...

 'HessMult',mtxmpy,'TolPCG',0.01);

% Pass B to qpbox4mult via the H argument. Also, B will be used in

% computing a preconditioner for PCG.

% A is passed as an additional argument after 'options'

[x, fval, exitflag, output] = quadprog(B,f,[],[],[],[],l,u,xstart,options);

 function W = qpbox4mult(B,Y)

 %QPBOX4MULT Hessian matrix product with dense structured Hessian.

 % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where

 % INPUT:

 % B - sparse square matrix (512 by 512)

 % Y - vector (or matrix) to be multiplied by B + A'*A.

 % VARIABLES from outer function runqpbox4prec:

 % A - sparse matrix with 512 rows and 10 columns.

 %

 % OUTPUT:

 % W - The product (B + A*A')*Y.

 %

 % Order multiplies to avoid forming A*A',

 % which is large and dense

 W = B*Y + A*(A'*Y);

 end

end

Now, enter

[fval,exitflag,output] = runqpbox4prec;

to run the preceding code. After 18 iterations and 50 PCG iterations, the function value
has the same value to five significant digits

fval

fval =

-1.0538e+003

but the first-order optimality is further reduced.

9 Quadratic Programming

9-24

output.firstorderopt

ans =

 0.0028

Note Decreasing TolPCG too much can substantially increase the number of PCG
iterations.

 Large Sparse Quadratic Program with Interior Point Algorithm

9-25

Large Sparse Quadratic Program with Interior Point Algorithm

This example shows the value of using sparse arithmetic when you have a sparse
problem. The matrix has n rows, where you choose n to be a large value. A full matrix of
size n-by-n can use up all available memory, but a sparse matrix presents no problem.

The problem is to minimize x'*H*x/2 + f'*x subject to

x(1) + x(2) + ... + x(n) = 0,

where f = [-1;-2;-3;...;-n].

1 Create the parameter n and the utility matrix T. The matrix T is a sparse circulant
matrix that is simply a helper for creating the sparse positive-definite quadratic
matrix H.

n = 30000; % Adjust n to a large value

T = spalloc(n,n,n); % make a sparse circulant matrix

r = 1:n-1;

for m = r

 T(m,m+1)=1;

end

T(n,1) = 1;

2 Create a sparse vector v. Then create the matrix H by shifted versions of v*v'. The
matrix T creates shifts of v.

v(n) = 0; v(1) = 1; v(2) = 2; v(4) = 3;

v = (sparse(v))';

% Make a banded type of matrix

H = spalloc(n,n,7*n);

r = 1:n;

for m = r

 H = H + v*v';

 v = T*v;

end

3 Take a look at the structure of H:

spy(H)

9 Quadratic Programming

9-26

4 Create the problem vector f and linear constraint.

f = -r; % linear term

A = ones(1,n); b = 0;

5 Solve the quadratic programming problem with the interior-point-convex
algorithm.

options = optimoptions(@quadprog,'Algorithm','interior-point-convex');

[x,fval,exitflag,output,lambda] = ...

 quadprog(H,f,A,b,[],[],[],[],[],options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the selected

 Large Sparse Quadratic Program with Interior Point Algorithm

9-27

value of the function tolerance, and constraints are satisfied

to within the selected value of the constraint tolerance.

6 View the solution value, output structure, and Lagrange multiplier:

fval,output,lambda

fval =

 -3.1331e+10

output =

 message: 'Minimum found that satisfies the constraints.…'

 algorithm: 'interior-point-convex'

 firstorderopt: 1.1665e-04

 constrviolation: 7.7762e-09

 iterations: 6

 cgiterations: []

lambda =

 ineqlin: 1.5000e+004

 eqlin: [0x1 double]

 lower: [30000x1 double]

 upper: [30000x1 double]

Since there are no lower bounds or upper bounds, all the values in lambda.lower
and lambda.upper are 0. The inequality constraint is active, since
lambda.ineqlin is nonzero.

7 On many computers you cannot create a full n-by-n matrix when n = 30000. So you
can run this problem only using sparse matrices.

H2 = zeros(3e4);

Out of memory. Type HELP MEMORY for your options.

10

Least Squares

• “Least-Squares (Model Fitting) Algorithms” on page 10-2
• “lsqnonlin with a Simulink Model” on page 10-11
• “Nonlinear Least Squares With and Without Jacobian” on page 10-17
• “Linear Least Squares with Bound Constraints” on page 10-21
• “Optimization App with the lsqlin Solver” on page 10-23
• “Jacobian Multiply Function with Linear Least Squares” on page 10-26
• “Nonlinear Curve Fitting with lsqcurvefit” on page 10-31
• “Fit a Model to Complex-Valued Data” on page 10-33

10 Least Squares

10-2

Least-Squares (Model Fitting) Algorithms

In this section...

“Least Squares Definition” on page 10-2
“Trust-Region-Reflective Least Squares” on page 10-3
“Interior-Point Linear Least Squares” on page 10-7
“Levenberg-Marquardt Method” on page 10-7

Least Squares Definition

Least squares, in general, is the problem of finding a vector x that is a local minimizer to
a function that is a sum of squares, possibly subject to some constraints:

min () min ()
x x

i

i

F x F x
2

2 2
= Â

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub.

There are several Optimization Toolbox solvers available for various types of F(x) and
various types of constraints:

Solver F(x) Constraints

\ C·x – d None
lsqnonneg C·x – d x ≥ 0
lsqlin C·x – d Bound, linear
lsqnonlin General F(x) Bound
lsqcurvefit F(x, xdata) – ydata Bound

There are five least-squares algorithms in Optimization Toolbox solvers, in addition to
the algorithms used in \:

• Trust-region-reflective
• Levenberg-Marquardt
• lsqlin active-set

 Least-Squares (Model Fitting) Algorithms

10-3

• lsqlin interior-point
• The algorithm used by lsqnonneg

All the algorithms except the lsqlin active-set algorithm are large-scale; see “Large-
Scale vs. Medium-Scale Algorithms” on page 2-12. For a general survey of nonlinear
least-squares methods, see Dennis [8]. Specific details on the Levenberg-Marquardt
method can be found in Moré [28].

Trust-Region-Reflective Least Squares

Trust-Region-Reflective Least Squares Algorithm

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and
returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,
move to a point with a lower function value. The basic idea is to approximate f with a
simpler function q, which reasonably reflects the behavior of function f in a neighborhood
N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min (), .
s

q s s N Œ{ }

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point
remains unchanged and N, the region of trust, is shrunk and the trial step computation
is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are
how to choose and compute the approximation q (defined at the current point x), how
to choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

10 Least Squares

10-4

min ,
1

2
s Hs s g DsT T+ £

Ï
Ì
Ó

¸
˝
˛

 such that D

where g is the gradient of f at the current point x, H is the Hessian matrix (the
symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a positive
scalar, and ∥ . ∥ is the 2-norm. Good algorithms exist for solving Equation 10-2 (see [48]);
such algorithms typically involve the computation of a full eigensystem and a Newton
process applied to the secular equation

1 1
0

D

- =

s

.

Such algorithms provide an accurate solution to Equation 10-2. However, they require
time proportional to several factorizations of H. Therefore, for trust-region problems a
different approach is needed. Several approximation and heuristic strategies, based on
Equation 10-2, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region
subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 10-2 is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by
s1 and s2, where s1 is in the direction of the gradient g, and s2 is either an approximate
Newton direction, i.e., a solution to

H s g◊ = -2 ,

or a direction of negative curvature,

s H s
T

2 2
0◊ ◊ < .

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

 Least-Squares (Model Fitting) Algorithms

10-5

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 10-2 to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is
adjusted according to standard rules. In particular, it is decreased if the trial step is not
accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares.
However, the underlying algorithmic ideas are the same as for the general case. These
special cases are discussed in later sections.

Large Scale Nonlinear Least Squares

An important special case for f(x) is the nonlinear least-squares problem

min () min () ,
x

i
i x

f x F x2
2

2
Â =

where F(x) is a vector-valued function with component i of F(x) equal to fi(x). The basic
method used to solve this problem is the same as in the general case described in “Trust-
Region Methods for Nonlinear Minimization” on page 6-2. However, the structure of
the nonlinear least-squares problem is exploited to enhance efficiency. In particular, an
approximate Gauss-Newton direction, i.e., a solution s to

min ,Js F+
2

2

(where J is the Jacobian of F(x)) is used to help define the two-dimensional subspace S.
Second derivatives of the component function fi(x) are not used.

In each iteration the method of preconditioned conjugate gradients is used to
approximately solve the normal equations, i.e.,

J Js J F
T T

= - ,

although the normal equations are not explicitly formed.

10 Least Squares

10-6

Large Scale Linear Least Squares

In this case the function f(x) to be solved is

f x Cx d() ,= +
2

2

possibly subject to linear constraints. The algorithm generates strictly feasible iterates
converging, in the limit, to a local solution. Each iteration involves the approximate
solution of a large linear system (of order n, where n is the length of x). The iteration
matrices have the structure of the matrix C. In particular, the method of preconditioned
conjugate gradients is used to approximately solve the normal equations, i.e.,

C Cx C d
T T

= - ,

although the normal equations are not explicitly formed.

The subspace trust-region method is used to determine a search direction. However,
instead of restricting the step to (possibly) one reflection step, as in the nonlinear
minimization case, a piecewise reflective line search is conducted at each iteration, as in
the quadratic case. See [45] for details of the line search. Ultimately, the linear systems
represent a Newton approach capturing the first-order optimality conditions at the
solution, resulting in strong local convergence rates.

Jacobian Multiply Function

lsqlin can solve the linearly-constrained least-squares problem without using the
matrix C explicitly. Instead, it uses a Jacobian multiply function jmfun,

W = jmfun(Jinfo,Y,flag)

that you provide. The function must calculate the following products for a matrix Y:

• If flag == 0 then W = C'*(C*Y).
• If flag > 0 then W = C*Y.
• If flag < 0 then W = C'*Y.

This can be useful if C is large, but contains enough structure that you can write jmfun
without forming C explicitly. For an example, see “Jacobian Multiply Function with
Linear Least Squares” on page 10-26.

 Least-Squares (Model Fitting) Algorithms

10-7

Interior-Point Linear Least Squares

The lsqlin 'interior-point' algorithm uses the “interior-point-convex
quadprog Algorithm” on page 9-2. The quadprog problem definition is to minimize a
quadratic function

min
x

T T
x Hx c x

1

2
+

subject to linear constraints and bound constraints. The lsqlin function minimizes the
squared 2-norm of the vector Cx – d subject to linear constraints and bound constraints.
In other words, lsqlin minimizes

Cx d Cx d Cx d

x C d Cx d

x C Cx x C d d Cx

T

T T T

T T T T T

- = -() -()

= -() -()

= () - -()

2

2

++

= () + -() +

d d

x C C x C d x d d

T

T T T
T

T1

2
2 2 .

This fits into the quadprog framework by setting the H matrix to 2CTC and the c vector
to (–2CTd). (The additive term dTd has no effect on the location of the minimum.) After
this reformulation of the lsqlin problem, the quadprog 'interior-point-convex'
algorithm calculates the solution.

Levenberg-Marquardt Method

In the least-squares problem a function f(x) is minimized that is a sum of squares.

min () () ().
x

i
i

f x F x F x= = Â2

2 2

Problems of this type occur in a large number of practical applications, especially when
fitting model functions to data, i.e., nonlinear parameter estimation. They are also
prevalent in control where you want the output, y(x,t), to follow some continuous model
trajectory, φ(t), for vector x and scalar t. This problem can be expressed as

10 Least Squares

10-8

min (,) () ,
x

t

t

n
y x t t dt

Œ¬
-()Ú j 2

1

2

where y(x,t) and φ(t) are scalar functions.

When the integral is discretized using a suitable quadrature formula, the above can be
formulated as a least-squares problem:

min () (,) () ,
x

i i
i

m

n
f x y x t t

Œ¬ =

= -()Â j
2

1

where y and j include the weights of the quadrature scheme. Note that in this problem
the vector F(x) is

F x

y x t t

y x t t

y x t tm m

()

(,) ()

(,) ()

...

(,) ()

=

-

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙

1 1

2 2

j

j

j
˙̇

.

In problems of this kind, the residual ∥F(x)∥ is likely to be small at the optimum
since it is general practice to set realistically achievable target trajectories. Although
the function in LS can be minimized using a general unconstrained minimization
technique, as described in “Basics of Unconstrained Optimization” on page 6-5, certain
characteristics of the problem can often be exploited to improve the iterative efficiency of
the solution procedure. The gradient and Hessian matrix of LS have a special structure.

Denoting the m-by-n Jacobian matrix of F(x) as J(x), the gradient vector of f(x) as G(x),
the Hessian matrix of f(x) as H(x), and the Hessian matrix of each Fi(x) as Hi(x), you have

G x J x F x

H x J x J x Q x

T

T

() () ()

() () () (),

=

= +

2

2 2

where

 Least-Squares (Model Fitting) Algorithms

10-9

Q x F x H xi i
i

m

() () ().= ◊

=

Â
1

The matrix Q(x) has the property that when the residual ∥F(x)∥ tends to zero as xk
approaches the solution, then Q(x) also tends to zero. Thus when ∥F(x)∥ is small at the
solution, a very effective method is to use the Gauss-Newton direction as a basis for an
optimization procedure.

In the Gauss-Newton method, a search direction, dk, is obtained at each major iteration,
k, that is a solution of the linear least-squares problem:

min () () .
x

k k
n

J x F x
Œ¬

-
2

2

The direction derived from this method is equivalent to the Newton direction when the
terms of Q(x) can be ignored. The search direction dk can be used as part of a line search
strategy to ensure that at each iteration the function f(x) decreases.

The Gauss-Newton method often encounters problems when the second-order term
Q(x) is significant. A method that overcomes this problem is the Levenberg-Marquardt
method.

The Levenberg-Marquardt [25], and [27] method uses a search direction that is a solution
of the linear set of equations

J x J x I d J x F xk

T

k k k k

T

k() () +() = - () ()l ,

or, optionally, of the equations

J x J x diag J x J x d J x F xk
T

k k k
T

k k k
T

k() () + () ()()() = - () ()l ,

where the scalar λk controls both the magnitude and direction of dk. Set option
ScaleProblem to 'none' to choose Equation 10-12, and set ScaleProblem to
'Jacobian' to choose Equation 10-13.

You set the initial value of the parameter λ0 using the InitDamping option.
Occasionally, the 0.01 default value of this option can be unsuitable. If you find that the

10 Least Squares

10-10

Levenberg-Marquardt algorithm makes little initial progress, try setting InitDamping
to a different value than the default, perhaps 1e2.

When λk is zero, the direction dk is identical to that of the Gauss-Newton method. As λk
tends to infinity, dk tends towards the steepest descent direction, with magnitude tending
to zero. This implies that for some sufficiently large λk, the term F(xk + dk) < F(xk) holds
true. The term λk can therefore be controlled to ensure descent even when second-order
terms, which restrict the efficiency of the Gauss-Newton method, are encountered. When
the step is successful (gives a lower function value), the algorithm sets λk+1 = λk/10. When
the step is unsuccessful, the algorithm sets λk+1 = λk*10.

The Levenberg-Marquardt method therefore uses a search direction that is a cross
between the Gauss-Newton direction and the steepest descent direction. This is
illustrated in Figure 10-1, Levenberg-Marquardt Method on Rosenbrock's Function. The
solution for Rosenbrock's function converges after 90 function evaluations compared to 48
for the Gauss-Newton method. The poorer efficiency is partly because the Gauss-Newton
method is generally more effective when the residual is zero at the solution. However,
such information is not always available beforehand, and the increased robustness of the
Levenberg-Marquardt method compensates for its occasional poorer efficiency.

Figure 10-1. Levenberg-Marquardt Method on Rosenbrock's Function

For an animated version of this figure, enter bandem at the MATLAB command line.

 lsqnonlin with a Simulink Model

10-11

lsqnonlin with a Simulink Model

Suppose that you want to optimize the control parameters in the Simulink model
optsim.mdl. (This model can be found in the optim/optimdemos folder. Note that
Simulink must be installed on your system to load this model.) The model includes a
nonlinear process plant modeled as a Simulink block diagram.

Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The actuator
limits are a saturation limit and a slew rate limit. The actuator saturation limit cuts
off input values greater than 2 units or less than –2 units. The slew rate limit of the
actuator is 0.8 units/sec. The closed-loop response of the system to a step input is shown
in Closed-Loop Response. You can see this response by opening the model (type optsim
at the command line or click the model name), and selecting Run from the Simulation
menu. The response plots to the scope.

10 Least Squares

10-12

Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input to the
system. The closed-loop plant is entered in terms of the blocks where the plant and
actuator have been placed in a hierarchical Subsystem block. A Scope block displays
output trajectories during the design process.

 lsqnonlin with a Simulink Model

10-13

Closed-Loop Model

One way to solve this problem is to minimize the error between the output and the input
signal. The variables are the parameters of the Proportional Integral Derivative (PID)
controller. If you only need to minimize the error at one time unit, it would be a single
objective function. But the goal is to minimize the error for all time steps from 0 to 100,
thus producing a multiobjective function (one function for each time step).

The routine lsqnonlin is used to perform a least-squares fit on the tracking of the
output. The tracking is performed via the function tracklsq, which returns the error
signal yout, the output computed by calling sim, minus the input signal 1. The code for
tracklsq is contained in the file runtracklsq.m, shown below.

The function runtracklsq sets up all the needed values and then calls lsqnonlin with
the objective function tracklsq, which is nested inside runtracklsq. The variable
options passed to lsqnonlin defines the criteria and display characteristics. In
this case you ask for output, use the 'levenberg-marquardt' algorithm, and give
termination tolerances for the step and objective function on the order of 0.001.

To run the simulation in the model optsim, the variables Kp, Ki, Kd, a1, and a2 (a1
and a2 are variables in the Plant block) must all be defined. Kp, Ki, and Kd are the
variables to be optimized. The function tracklsq is nested inside runtracklsq so that
the variables a1 and a2 are shared between the two functions. The variables a1 and a2
are initialized in runtracklsq.

The objective function tracklsq runs the simulation. The simulation can be run either
in the base workspace or the current workspace, that is, the workspace of the function
calling sim, which in this case is the workspace of tracklsq. In this example, the
SrcWorkspace option is set to 'Current' to tell sim to run the simulation in the
current workspace. The simulation is performed to 100 seconds.

10 Least Squares

10-14

When the simulation is completed, the myobj object is created in the current workspace
(that is, the workspace of tracklsq). The Outport block in the block diagram model puts
the yout field of the object into the current workspace at the end of the simulation.

The following is the code for runtracklsq:

function [Kp,Ki,Kd] = runtracklsq

% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.

optsim % Load the model

pid0 = [0.63 0.0504 1.9688]; % Set initial values

a1 = 3; a2 = 43; % Initialize model plant variables

options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...

 'Display','off','TolX',0.001,'TolFun',0.001);

pid = lsqnonlin(@tracklsq, pid0, [], [], options);

Kp = pid(1); Ki = pid(2); Kd = pid(3);

 function F = tracklsq(pid)

 % Track the output of optsim to a signal of 1

 % Variables a1 and a2 are needed by the model optsim.

 % They are shared with RUNTRACKLSQ so do not need to be

 % redefined here.

 Kp = pid(1);

 Ki = pid(2);

 Kd = pid(3);

 % Set sim options and compute function value

 myobj = sim('optsim','SrcWorkspace','Current', ...

 'StopTime','100');

 F = myobj.get('yout') - 1;

 end

end

Copy the code for runtracklsq to a file named runtracklsq.m, placed in a folder on
your MATLAB path.

When you run runtracklsq, the optimization gives the solution for the proportional,
integral, and derivative (Kp, Ki, Kd) gains of the controller:
[Kp, Ki, Kd] = runtracklsq

Kp =

 2.9633

Ki =

 lsqnonlin with a Simulink Model

10-15

 0.1436

Kd =

 13.1386

Here is the resulting closed-loop step response.

Closed-Loop Response Using lsqnonlin

Note The call to sim results in a call to one of the Simulink ordinary differential
equation (ODE) solvers. A choice must be made about the type of solver to use. From
the optimization point of view, a fixed-step solver is the best choice if that is sufficient to
solve the ODE. However, in the case of a stiff system, a variable-step method might be
required to solve the ODE.

The numerical solution produced by a variable-step solver, however, is not a smooth
function of parameters, because of step-size control mechanisms. This lack of smoothness
can prevent the optimization routine from converging. The lack of smoothness is not
introduced when a fixed-step solver is used. (For a further explanation, see [53].)

10 Least Squares

10-16

Simulink Design Optimization software is recommended for solving multiobjective
optimization problems in conjunction with Simulink variable-step solvers. It provides a
special numeric gradient computation that works with Simulink and avoids introducing a
problem of lack of smoothness.

 Nonlinear Least Squares With and Without Jacobian

10-17

Nonlinear Least Squares With and Without Jacobian

In this section...

“Problem definition and solution technique” on page 10-17
“Step 1: Write a file myfun.m that computes the objective function values.” on page
10-17
“Step 2: Call the nonlinear least-squares routine.” on page 10-18
“Step 3: Include a Jacobian.” on page 10-18

Problem definition and solution technique

This example shows how to solve a nonlinear least squares problem in two ways. It first
shows the solution without using a Jacobian function. Then it shows how to include a
Jacobian, and it shows the efficiency improvement that the Jacobian gives.

The problem has 10 terms with 2 unknowns: find x, a two-dimensional vector, that
minimizes

2 2 1 2

2

1

10

+ - -()
=

Â k e e
kx kx

k

,

starting at the point x0 = [0.3,0.4].

Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user
function, the function passed to lsqnonlin should compute the vector valued function

F x k e ek
kx kx() ,= + - -2 2 1 2

for k = 1 to 10 (that is, F should have 10 components).

Step 1: Write a file myfun.m that computes the objective function values.

function F = myfun(x)

k = 1:10;

F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

10 Least Squares

10-18

Step 2: Call the nonlinear least-squares routine.

x0 = [0.3,0.4]; % Starting guess

[x,resnorm,res,eflag,output1] = lsqnonlin(@myfun,x0); % Invoke optimizer

Because the Jacobian is not computed in myfun.m, and no Jacobian sparsity pattern is
provided by the JacobPattern option in options, lsqnonlin calls the trust-region
reflective algorithm with JacobPattern set to Jstr = sparse(ones(10,2)). This is
the default for lsqnonlin. Note that the Jacobian option in options is set to 'off'
by default.

When the finite-differencing routine is called initially, it detects that Jstr is actually a
dense matrix, i.e., no speed benefit is derived from storing it as a sparse matrix. From
then on, the finite-differencing routine uses Jstr = ones(10,2) (a full matrix) for the
optimization computations.

After 72 function evaluations, this example gives the solution

x,resnorm

x =

 0.2578 0.2578

resnorm =

 124.3622

Most computer systems can handle much larger full problems, say into the hundreds
of equations and variables. But if there is some sparsity structure in the Jacobian (or
Hessian) that can be taken advantage of, the large-scale methods always runs faster if
this information is provided.

Step 3: Include a Jacobian.

The objective function is simple enough to calculate its Jacobian. Following the definition
in “Jacobians of Vector Functions” on page 2-25, a Jacobian function represents the
matrix

J x
F x

x
kj

k

j

()
()

.=
∂

∂

Here, Fk(x is the kth component of the objective function. This example has

 Nonlinear Least Squares With and Without Jacobian

10-19

F x k e ek
kx kx() ,= + - -2 2 1 2

so

J x ke

J x ke

k
kx

k
kx

1

2

1

2

()

() .

= -

= -

Modify the objective function file.

function [F,J] = myfun(x)

k = 1:10;

F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

if nargout > 1

 J = zeros(10,2);

 J(k,1) = -k.*exp(k*x(1));

 J(k,2) = -k.*exp(k*x(2));

end

Set options so the solver uses the Jacobian.

opts = optimoptions(@lsqnonlin,'Jacobian','on');

Run the solver.

x0 = [0.3 0.4]; % Starting guess

[x,resnorm,res,eflag,output2] = lsqnonlin(@myfun,x0,[],[],opts);

The solution is the same as before.

x,resnorm

x =

 0.2578 0.2578

resnorm =

 124.3622

The advantage to using a Jacobian is that the solver takes fewer function evaluations, 24
instead of 72.

[output1.funcCount,output2.funcCount]

10 Least Squares

10-20

ans =

 72 24

 Linear Least Squares with Bound Constraints

10-21

Linear Least Squares with Bound Constraints

Many situations give rise to sparse linear least-squares problems, often with bounds on
the variables. The next problem requires that the variables be nonnegative. This problem
comes from fitting a function approximation to a piecewise linear spline. Specifically,
particles are scattered on the unit square. The function to be approximated is evaluated
at these points, and a piecewise linear spline approximation is constructed under the
condition that (linear) coefficients are not negative. There are 2000 equations to fit on
400 variables:

load particle % Get C, d

lb = zeros(400,1);

[x,resnorm,residual,exitflag,output] = ...

 lsqlin(C,d,[],[],[],[],lb);

The default diagonal preconditioning works fairly well:

exitflag,resnorm,output

exitflag =

 3

resnorm =

 22.5794

output =

 iterations: 10

 algorithm: 'trust-region-reflective'

 firstorderopt: 2.7870e-05

 cgiterations: 42

 message: 'Optimization terminated: relative function value changing by less…'

For bound constrained problems, the first-order optimality is the infinity norm of v.*g,
where v is defined as in “Box Constraints” on page 6-25, and g is the gradient.

You can improve (decrease) the first-order optimality measure by using a sparse QR
factorization in each iteration. To do this, set PrecondBandWidth to inf:

options = optimoptions('lsqlin','PrecondBandWidth',inf);

[x,resnorm,residual,exitflag,output] = ...

 lsqlin(C,d,[],[],[],[],lb,[],[],options);

The first-order optimality measure decreases:

10 Least Squares

10-22

exitflag,resnorm,output

exitflag =

 1

resnorm =

 22.5794

output =

 iterations: 12

 algorithm: 'trust-region-reflective'

 firstorderopt: 5.5907e-15

 cgiterations: 0

 message: 'Optimization terminated: first order optimality with optimality…'

 Optimization App with the lsqlin Solver

10-23

Optimization App with the lsqlin Solver

In this section...

“The Problem” on page 10-23
“Setting Up the Problem” on page 10-23

The Problem

This example shows how to use the Optimization app to solve a constrained least-squares
problem.

Note: The Optimization app warns that it will be removed in a future release.

The problem in this example is to find the point on the plane x1 + 2x2 + 4x3 = 7 that is
closest to the origin. The easiest way to solve this problem is to minimize the square of
the distance from a point x = (x1,x2,x3) on the plane to the origin, which returns the same
optimal point as minimizing the actual distance. Since the square of the distance from
an arbitrary point (x1,x2,x3) to the origin is x x x

1

2

2

2

3

2
+ + , you can describe the problem as

follows:

min () ,
x

f x x x x= + +1
2

2
2

3
2

subject to the constraint
x1 + 2x2 + 4x3 = 7.

The function f(x) is called the objective function and x1 + 2x2 + 4x3 = 7 is an equality
constraint. More complicated problems might contain other equality constraints,
inequality constraints, and upper or lower bound constraints.

Setting Up the Problem

This section shows how to set up the problem with the lsqlin solver in the Optimization
app.

10 Least Squares

10-24

1 Enter optimtool in the Command Window to open the Optimization app.
2 Select lsqlin from the selection of solvers. Use the Active set algorithm.

3 Enter the following to create variables for the objective function:

• In the C field, enter eye(3).
• In the d field, enter zeros(3,1).

The C and d fields should appear as shown in the following figure.

4 Enter the following to create variables for the equality constraints:

• In the Aeq field, enter [1 2 4].
• In the beq field, enter 7.

The Aeq and beq fields should appear as shown in the following figure.

5 Click the Start button as shown in the following figure.

 Optimization App with the lsqlin Solver

10-25

6 When the algorithm terminates, under Run solver and view results the following
information is displayed:

• The Current iteration value when the algorithm terminated, which for this
example is 1.

• The final value of the objective function when the algorithm terminated:

Objective function value: 2.333333333333333

• The algorithm termination message:

Optimization terminated.

• The final point, which for this example is

 0.3333

 0.6667

 1.3333

10 Least Squares

10-26

Jacobian Multiply Function with Linear Least Squares

You can solve a least-squares problem of the form

min
x

C x d
1

2
2

2
◊ -

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub, for problems where C is very large, perhaps too
large to be stored, by using a Jacobian multiply function.

For example, consider the case where C is a 2n-by-n matrix based on a circulant matrix.
This means the rows of C are shifts of a row vector v. This example has the row vector v
with elements of the form (–1)k+1/k:
v = [1, –1/2, 1/3, –1/4, ... , –1/n],

cyclically shifted:

C

n

n n

n n n

=

- -

- - -

- - - -

1 1 2 1 3 1

1 1 1 2 1 1

1 1 1 1 1 2

/ / ... /

/ / ... / ()

/ () / ... / ())

/ / / ...

/ / ... /

/ / ... / ()

/

M M M O M

- -

- -

- - -

1 2 1 3 1 4 1

1 1 2 1 3 1

1 1 1 2 1 1

1

n

n n

(() / ... / ()

/ / / ...

n n n- - - -

- -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

1 1 1 1 2

1 2 1 3 1 4 1

M M M O M

˘̆

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

.

This least-squares example considers the problem where
d = [n – 1; n – 2; ...; –n],

and the constraints are –5 ≤ x(i) ≤ 5 for i = 1, ..., n.

For large enough n, the dense matrix C does not fit into computer memory. (n = 10,000 is
too large on one tested system.)

A Jacobian multiply function has the following syntax:

 Jacobian Multiply Function with Linear Least Squares

10-27

w = jmfcn(Jinfo,Y,flag)

Jinfo is a matrix the same size as C, used as a preconditioner. If C is too large to fit into
memory, Jinfo should be sparse. Y is a vector or matrix sized so that C*Y or C'*Y makes
sense. flag tells jmfcn which product to form:

• flag > 0 ⇒ w = C*Y
• flag < 0 ⇒ w = C'*Y
• flag = 0 ⇒ w = C'*C*Y

Since C is such a simply structured matrix, it is easy to write a Jacobian multiply
function in terms of the vector v; i.e., without forming C. Each row of C*Y is the product
of a shifted version of v times Y. The following matrix performs one step of the shift: v
shifts to v*T, where

T =

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

...

...

...

...

.M M M O M

To compute C*Y, compute v*Y to find the first row, then shift v and compute the second
row, and so on.

To compute C'*Y, perform the same computation, but use a shifted version of temp, the
vector formed from the first row of C':

temp = [fliplr(v)*T,fliplr(v)*T];

To compute C'*C*Y, simply compute C*Y using shifts of v, and then compute C' times
the result using shifts of fliplr(v).

The dolsqJac function in the following code sets up the vector v and matrix T, and calls
the solver lsqlin:

function [x,resnorm,residual,exitflag,output] = dolsqJac(n)

%

r = 1:n-1; % index for making vectors

T = spalloc(n,n,n); % making a sparse circulant matrix

10 Least Squares

10-28

for m = r

 T(m,m+1)=1;

end

T(n,1) = 1;

v(n) = (-1)^(n+1)/n; % allocating the vector v

v(r) =(-1).^(r+1)./r;

% Now C should be a 2n-by-n circulant matrix based on v,

% but that might be too large to fit into memory.

r = 1:2*n;

d(r) = n-r;

Jinfo = [speye(n);speye(n)]; % sparse matrix for preconditioning

% This matrix is a required input for the solver;

% preconditioning is not really being used in this example

% Pass the matrix T and vector v so they don't need to be

% computed in the Jacobian multiply function

options = optimoptions('lsqlin','JacobMult',...

 @(Jinfo,Y,flag)lsqcirculant(Jinfo,Y,flag,T,v));

lb = -5*ones(1,n);

ub = 5*ones(1,n);

[x,resnorm,residual,exitflag,output] = ...

 lsqlin(Jinfo,d,[],[],[],[],lb,ub,[],options);

The Jacobian multiply function lsqcirculant is as follows:

function w = lsqcirculant(Jinfo,Y,flag,T,v)

% This function computes the Jacobian multiply functions

% for a 2n-by-n circulant matrix example

if flag > 0

 w = Jpositive(Y);

elseif flag < 0

 w = Jnegative(Y);

else

 w = Jnegative(Jpositive(Y));

end

 function a = Jpositive(q)

 % Calculate C*q

 Jacobian Multiply Function with Linear Least Squares

10-29

 temp = v;

 a = zeros(size(q)); % allocating the matrix a

 a = [a;a]; % the result is twice as tall as the input

 for r = 1:size(a,1)

 a(r,:) = temp*q; % compute the rth row

 temp = temp*T; % shift the circulant

 end

 end

 function a = Jnegative(q)

 % Calculate C'*q

 temp = fliplr(v)*T; % the circulant for C'

 len = size(q,1)/2; % the returned vector is half as long

 % as the input vector

 a = zeros(len,size(q,2)); % allocating the matrix a

 for r = 1:len

 a(r,:) = [temp,temp]*q; % compute the rth row

 temp = temp*T; % shift the circulant

 end

 end

end

When n = 3000, C is an 18,000,000-element dense matrix. Here are the results of the
dolsqJac function for n = 3000 at selected values of x, and the output structure:

[x,resnorm,residual,exitflag,output] = dolsqJac(3000);

Optimization terminated: relative function value changing by

 less than OPTIONS.TolFun.

x(1)

ans =

 5.0000

x(1500)

ans =

 -0.5201

x(3000)

ans =

 -5.0000

10 Least Squares

10-30

output

output =

 iterations: 16

 algorithm: 'trust-region-reflective'

 firstorderopt: 7.5143e-05

 cgiterations: 36

 message: 'Optimization terminated: relative function value changing by les…'

 Nonlinear Curve Fitting with lsqcurvefit

10-31

Nonlinear Curve Fitting with lsqcurvefit

lsqcurvefit enables you to fit parameterized nonlinear functions to data easily. You
can use lsqnonlin as well; lsqcurvefit is simply a convenient way to call lsqnonlin
for curve fitting.

In this example, the vector xdata represents 100 data points, and the vector ydata
represents the associated measurements. Generate the data using the following script:

rng(5489,'twister') % reproducible

xdata = -2*log(rand(100,1));

ydata = (ones(100,1) + .1*randn(100,1)) + (3*ones(100,1)+...

 0.5*randn(100,1)).*exp((-(2*ones(100,1)+...

 .5*randn(100,1))).*xdata);

The modeled relationship between xdata and ydata is

ydata a a a xdatai i i= + - +1 2 3exp() .e

The script generates xdata from 100 independent samples from an exponential
distribution with mean 2. It generates ydata from Equation 10-14 using a = [1;3;2],
perturbed by adding normal deviates with standard deviations [0.1;0.5;0.5].

The goal is to find parameters â
i , i = 1, 2, 3, for the model that best fit the data.

In order to fit the parameters to the data using lsqcurvefit, you need to define a
fitting function. Define the fitting function predicted as an anonymous function:

predicted = @(a,xdata) a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata);

To fit the model to the data, lsqcurvefit needs an initial estimate a0 of the
parameters. Enter

a0 = [2;2;2];

Run the solver lsqcurvefit as follows:

[ahat,resnorm,residual,exitflag,output,lambda,jacobian] =...

 lsqcurvefit(predicted,a0,xdata,ydata);

Local minimum possible.

10 Least Squares

10-32

lsqcurvefit stopped because the final change in the

sum of squares relative to its initial value is

less than the default value of the function tolerance.

To see the resulting least-squares estimate of â , enter:

ahat

ahat =

 1.0169

 3.1444

 2.1596

The fitted values ahat are within 8% of a = [1;3;2].

If you have Statistics and Machine Learning Toolbox™ software, use the nlparci
function to generate confidence intervals for the ahat estimate.

 Fit a Model to Complex-Valued Data

10-33

Fit a Model to Complex-Valued Data

This example shows how to perform nonlinear fitting of complex-valued data. While
most Optimization Toolbox solvers and algorithms operate only on real-valued data, the
levenberg-marquardt algorithm works on both real-valued and complex-valued data.

Do not set the FunValCheck option to 'on' when using complex data. The solver errors.

Data Model

The data model is a simple exponential:

y x v v e
v x

() .= +1 2
3

The x is input data, y is the response, and v is a complex-valued vector of coefficients. The
goal is to estimate v from x and noisy observations y.

Artificial Data with Noise

Generate artificial data for the model. Take the complex coefficient vector v as
[2;3+4i;-.5+.4i]. Take the observations x as exponentially distributed. Add complex-
valued noise to the responses y.

rng default % for reproducibility

N = 100; % number of observations

v0 = [2;3+4i;-.5+.4i]; % coefficient vector

xdata = -log(rand(N,1)); % exponentially distributed

noisedata = randn(N,1).*exp((1i*randn(N,1))); % complex noise

cplxydata = v0(1) + v0(2).*exp(v0(3)*xdata) + noisedata;

Fit the Model to Recover the Coefficient Vector

The difference between the response predicted by the data model and an observation
(xdata for x and response cplxydata for y) is:

objfcn = @(v)v(1)+v(2)*exp(v(3)*xdata) - cplxydata;

Use either lsqnonlin or lsqcurvefit to fit the model to the data. This example
first uses lsqnonlin. Because the data is complex, set the Algorithm option to
'levenberg-marquardt'.

opts = optimoptions(@lsqnonlin,...

10 Least Squares

10-34

 'Algorithm','levenberg-marquardt','Display','off');

x0 = (1+1i)*[1;1;1]; % arbitrary initial guess

[vestimated,resnorm,residuals,exitflag,output] = lsqnonlin(objfcn,x0,[],[],opts);

vestimated,resnorm,exitflag,output.firstorderopt

vestimated =

 2.1581 + 0.1351i

 2.7399 + 3.8012i

 -0.5338 + 0.4660i

resnorm =

 100.9933

exitflag =

 3

ans =

 0.0013

lsqnonlin recovers the complex coefficient vector to about one significant digit. The
norm of the residual is sizable, indicating that the noise keeps the model from fitting
all the observations. The exit flag is 3, not the preferable 1, because the first-order
optimality measure is about 1e-3, not below 1e-6.

Alternative: Use lsqcurvefit

To fit using lsqcurvefit, write the model to give just the responses, not the responses
minus the response data.

objfcn = @(v,xdata)v(1)+v(2)*exp(v(3)*xdata);

Use lsqcurvefit options and syntax.

opts = optimoptions(@lsqcurvefit,opts); % reuse the options

[vestimated,resnorm] = lsqcurvefit(objfcn,x0,xdata,cplxydata,[],[],opts)

vestimated =

 Fit a Model to Complex-Valued Data

10-35

 2.1581 + 0.1351i

 2.7399 + 3.8012i

 -0.5338 + 0.4660i

resnorm =

 100.9933

The results match those from lsqnonlin, because the underlying algorithms are
identical. Use whichever solver you find more convenient.

Alternative: Split Real and Imaginary Parts

To use the trust-region-reflective algorithm, such as when you want to include
bounds, you must split the real and complex parts of the coefficients into separate
variables. For this problem, split the coefficients as follows:

y v iv v iv v iv x

v v v x v x v

= + + + +()

= + -

1 2 3 4 5 6

1 3 5 6 4

()exp ()

exp()cos() expp()sin()

exp()cos() exp()sin(

v x v x

i v v v x v x v v x v x

5 6

2 4 5 6 3 5 6

()

+ + +)) .()

Write the response function for lsqcurvefit.

function yout = cplxreal(v,xdata)

yout = zeros(length(xdata),2); % allocate yout

expcoef = exp(v(5)*xdata(:)); % magnitude

coscoef = cos(v(6)*xdata(:)); % real cosine term

sincoef = sin(v(6)*xdata(:)); % imaginary sin term

yout(:,1) = v(1) + expcoef.*(v(3)*coscoef - v(4)*sincoef);

yout(:,2) = v(2) + expcoef.*(v(4)*coscoef + v(3)*sincoef);

Save this code as the file cplxreal.m on your MATLAB path.

Split the response data into its real and imaginary parts.

ydata2 = [real(cplxydata),imag(cplxydata)];

The coefficient vector v now has six dimensions. Initialize it as all ones, and solve the
problem using lsqcurvefit.

x0 = ones(6,1);

10 Least Squares

10-36

[vestimated,resnorm,residuals,exitflag,output] = ...

 lsqcurvefit(@cplxreal,x0,xdata,ydata2);

vestimated,resnorm,exitflag,output.firstorderopt

vestimated =

 2.1582

 0.1351

 2.7399

 3.8012

 -0.5338

 0.4660

resnorm =

 100.9933

exitflag =

 3

ans =

 0.0018

Interpret the six-element vector vestimated as a three-element complex vector, and you
see that the solution is virtually the same as the previous solutions.

11

Systems of Equations

• “Equation Solving Algorithms” on page 11-2
• “Nonlinear Equations with Analytic Jacobian” on page 11-9
• “Nonlinear Equations with Finite-Difference Jacobian” on page 11-12
• “Nonlinear Equations with Jacobian” on page 11-14
• “Nonlinear Equations with Jacobian Sparsity Pattern” on page 11-17
• “Nonlinear Systems with Constraints” on page 11-20

11 Systems of Equations

11-2

Equation Solving Algorithms

In this section...

“Equation Solving Definition” on page 11-2
“Trust-Region Reflective fsolve Algorithm” on page 11-2
“Trust-Region Dogleg Method” on page 11-5
“Levenberg-Marquardt Method” on page 11-7
“\ Algorithm” on page 11-8
“fzero Algorithm” on page 11-8

Equation Solving Definition

Given a set of n nonlinear functions Fi(x), where n is the number of components of the
vector x, the goal of equation solving is to find a vector x that makes all Fi(x) = 0.

fsolve attempts to solve systems of equations by minimizing the sum of squares of the
components. If the sum of squares is zero, the system of equation is solved. fsolve has
three algorithms:

• Trust-region-reflective
• Trust-region dogleg
• Levenberg-Marquardt

All algorithms are large-scale; see “Large-Scale vs. Medium-Scale Algorithms” on page
2-12.

The fzero function solves a single one-dimensional equation.

The \ function solves systems of linear equations.

Trust-Region Reflective fsolve Algorithm

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a
simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained
minimization problem, minimize f(x), where the function takes vector arguments and

 Equation Solving Algorithms

11-3

returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e.,
move to a point with a lower function value. The basic idea is to approximate f with a
simpler function q, which reasonably reflects the behavior of function f in a neighborhood
N around the point x. This neighborhood is the trust region. A trial step s is computed by
minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min (), .
s

q s s N Œ{ }

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point
remains unchanged and N, the region of trust, is shrunk and the trial step computation
is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are
how to choose and compute the approximation q (defined at the current point x), how
to choose and modify the trust region N, and how accurately to solve the trust-region
subproblem. This section focuses on the unconstrained problem. Later sections discuss
additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by
the first two terms of the Taylor approximation to F at x; the neighborhood N is usually
spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically
stated

min ,
1

2
s Hs s g DsT T+ £

Ï
Ì
Ó

¸
˝
˛

 such that D

where g is the gradient of f at the current point x, H is the Hessian matrix (the
symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a positive
scalar, and ∥ . ∥ is the 2-norm. Good algorithms exist for solving Equation 11-2 (see [48]);
such algorithms typically involve the computation of a full eigensystem and a Newton
process applied to the secular equation

1 1
0

D

- =

s

.

Such algorithms provide an accurate solution to Equation 11-2. However, they require
time proportional to several factorizations of H. Therefore, for trust-region problems a

11 Systems of Equations

11-4

different approach is needed. Several approximation and heuristic strategies, based on
Equation 11-2, have been proposed in the literature ([42] and [50]). The approximation
approach followed in Optimization Toolbox solvers is to restrict the trust-region
subproblem to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 11-2 is trivial even if full eigenvalue/
eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate
gradient process described below. The solver defines S as the linear space spanned by
s1 and s2, where s1 is in the direction of the gradient g, and s2 is either an approximate
Newton direction, i.e., a solution to

H s g◊ = -2 ,

or a direction of negative curvature,

s H s
T

2 2
0◊ ◊ < .

The philosophy behind this choice of S is to force global convergence (via the steepest
descent direction or negative curvature direction) and achieve fast local convergence (via
the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 11-2 to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is
adjusted according to standard rules. In particular, it is decreased if the trial step is not
accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized
functions: nonlinear least-squares, quadratic functions, and linear least-squares.
However, the underlying algorithmic ideas are the same as for the general case. These
special cases are discussed in later sections.

 Equation Solving Algorithms

11-5

Preconditioned Conjugate Gradient Method

A popular way to solve large symmetric positive definite systems of linear equations
Hp = –g is the method of Preconditioned Conjugate Gradients (PCG). This iterative
approach requires the ability to calculate matrix-vector products of the form H·v where
v is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for
H. That is, M = C2, where C–1HC–1 is a well-conditioned matrix or a matrix with clustered
eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric.
However, H is guaranteed to be positive definite only in the neighborhood of a strong
minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is
encountered, i.e., dTHd ≤ 0. The PCG output direction, p, is either a direction of negative
curvature or an approximate (tol controls how approximate) solution to the Newton
system Hp = –g. In either case p is used to help define the two-dimensional subspace
used in the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2.

Trust-Region Dogleg Method

Another approach is to solve a linear system of equations to find the search direction,
namely, Newton's method says to solve for the search direction dk such that
J(xk)dk = –F(xk)
xk + 1 = xk + dk,

where J(xk) is the n-by-n Jacobian

J x

F x

F x

F x

k

k

T

k

T

n k

T

() =

()

()

()

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

—

—

—

1

2

M

.

Newton's method can run into difficulties. J(xk) may be singular, and so the Newton step
dk is not even defined. Also, the exact Newton step dk may be expensive to compute. In
addition, Newton's method may not converge if the starting point is far from the solution.

Using trust-region techniques (introduced in “Trust-Region Methods for Nonlinear
Minimization” on page 6-2) improves robustness when starting far from the solution and

11 Systems of Equations

11-6

handles the case when J(xk) is singular. To use a trust-region strategy, a merit function is
needed to decide if xk + 1 is better or worse than xk. A possible choice is

min () .
d

k
T

kf d F x d F x d= +() +()
1

2

But a minimum of f(d) is not necessarily a root of F(x).

The Newton step dk is a root of
M(xk + d) = F(xk) + J(xk)d,

and so it is also a minimum of m(d), where

min ()
d

k k k

k

T

k
T

k

m d M x d F x J x d

F x F x d J x

= +() = () + ()

= () () + (

1

2

1

2

1

2

2

2

2

2

)) () + () ()
T

k
T

k

T

kF x d J x J x d
1

2
.

Then m(d) is a better choice of merit function than f(d), and so the trust-region
subproblem is

min ,
d

k

T

k
T

k

T

k
T

k

T

kF x F x d J x F x d J x J x d
1

2

1

2
() () + () () + () ()È

ÎÍ
˘

˚̇

such that ∥D·d∥ ≤ Δ. This subproblem can be efficiently solved using a dogleg strategy.

For an overview of trust-region methods, see Conn [4], and Nocedal [31].

Trust-Region Dogleg Implementation

The key feature of this algorithm is the use of the Powell dogleg procedure for computing
the step d, which minimizes Equation 11-6. For a detailed description, see Powell [34].

The step d is constructed from a convex combination of a Cauchy step (a step along
the steepest descent direction) and a Gauss-Newton step for f(x). The Cauchy step is
calculated as
dC = –αJ(xk)TF(xk),

where α is chosen to minimize Equation 11-5.

 Equation Solving Algorithms

11-7

The Gauss-Newton step is calculated by solving
J(xk)·dGN = –F(xk),

using the MATLAB \ (matrix left division) operator.

The step d is chosen so that
d = dC + λ(dGN – dC),

where λ is the largest value in the interval [0,1] such that ∥d∥ ≤ Δ. If Jk is (nearly)
singular, d is just the Cauchy direction.

The dogleg algorithm is efficient since it requires only one linear solve per iteration (for
the computation of the Gauss-Newton step). Additionally, it can be more robust than
using the Gauss-Newton method with a line search.

Levenberg-Marquardt Method

The Levenberg-Marquardt [25], and [27] method uses a search direction that is a solution
of the linear set of equations

J x J x I d J x F xk

T

k k k k

T

k() () +() = - () ()l ,

or, optionally, of the equations

J x J x diag J x J x d J x F xk
T

k k k
T

k k k
T

k() () + () ()()() = - () ()l ,

where the scalar λk controls both the magnitude and direction of dk. Set option
ScaleProblem to 'none' to choose Equation 11-7, and set ScaleProblem to
'Jacobian' to choose Equation 11-8.

When λk is zero, the direction dk is the Gauss-Newton method. As λk tends to infinity,
dk tends towards the steepest descent direction, with magnitude tending to zero. This
implies that for some sufficiently large λk, the term F(xk + dk) < F(xk) holds true.
The term λk can therefore be controlled to ensure descent even when second-order
terms, which restrict the efficiency of the Gauss-Newton method, are encountered. The
Levenberg-Marquardt method therefore uses a search direction that is a cross between
the Gauss-Newton direction and the steepest descent direction.

11 Systems of Equations

11-8

\ Algorithm

This algorithm is described in the MATLAB arithmetic operators section for \
(mldivide).

fzero Algorithm

fzero attempts to find the root of a scalar function f of a scalar variable x.

fzero looks for an interval around an initial point such that f(x) changes sign. If you
give an initial interval instead of an initial point, fzero checks to make sure f(x) has
different signs at the endpoints of the interval. The initial interval must be finite; it
cannot contain ±Inf.

fzero uses a combination of interval bisection, linear interpolation, and inverse
quadratic interpolation in order to locate a root of f(x). See fzero for more information.

 Nonlinear Equations with Analytic Jacobian

11-9

Nonlinear Equations with Analytic Jacobian

This example demonstrates the use of the default trust-region-dogleg fsolve algorithm
(see “Large-Scale vs. Medium-Scale Algorithms” on page 2-12). It is intended for
problems where

• The system of nonlinear equations is square, i.e., the number of equations equals the
number of unknowns.

• There exists a solution x such that F(x) = 0.

The example uses fsolve to obtain the minimum of the banana (or Rosenbrock)
function by deriving and then solving an equivalent system of nonlinear equations. The
Rosenbrock function, which has a minimum of F(x) = 0, is a common test problem in
optimization. It has a high degree of nonlinearity and converges extremely slowly if you
try to use steepest descent type methods. It is given by

f x x x x() () .= -() + -100 12 1
2

2

1
2

First generalize this function to an n-dimensional function, for any positive, even value of
n:

f x x x xi i i
i

n

() () .

/

= -() + -- -
=
Â100 12 2 1

2
2

2 1
2

1

2

This function is referred to as the generalized Rosenbrock function. It consists of n
squared terms involving n unknowns.

Before you can use fsolve to find the values of x such that F(x) = 0, i.e., obtain the
minimum of the generalized Rosenbrock function, you must rewrite the function as the
following equivalent system of nonlinear equations:

11 Systems of Equations

11-10

F x

F x x

F x

F x x

F n

()

()

()

()

()

1 1

2 10

3 1

4 10

1 1

1

2 1
2

3

4 3
2

= -

= -()
= -

= -()

- = -

M

xx

F n x x

n

n n

-

-= -()
1

1
2

10() .

This system is square, and you can use fsolve to solve it. As the example demonstrates,
this system has a unique solution given by xi = 1, i = 1,...,n.

Step 1: Write a file bananaobj.m to compute the objective function values
and the Jacobian.
function [F,J] = bananaobj(x)

% Evaluate the vector function and the Jacobian matrix for

% the system of nonlinear equations derived from the general

% n-dimensional Rosenbrock function.

% Get the problem size

n = length(x);

if n == 0, error('Input vector, x, is empty.'); end

if mod(n,2) ~= 0,

 error('Input vector, x ,must have an even number of components.');

end

% Evaluate the vector function

odds = 1:2:n;

evens = 2:2:n;

F = zeros(n,1);

F(odds,1) = 1-x(odds);

F(evens,1) = 10.*(x(evens)-x(odds).^2);

% Evaluate the Jacobian matrix if nargout > 1

if nargout > 1

 c = -ones(n/2,1); C = sparse(odds,odds,c,n,n);

 d = 10*ones(n/2,1); D = sparse(evens,evens,d,n,n);

 e = -20.*x(odds); E = sparse(evens,odds,e,n,n);

 J = C + D + E;

end

Step 2: Call the solve routine for the system of equations.

n = 64;

x0(1:n,1) = -1.9;

x0(2:2:n,1) = 2;

options = optimoptions(@fsolve,'Display','iter','Jacobian','on');

 Nonlinear Equations with Analytic Jacobian

11-11

[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

Use the starting point x(i) = –1.9 for the odd indices, and x(i) = 2 for the even indices.
Set Display to 'iter' to see the solver's progress. Set Jacobian to 'on' to use the
Jacobian defined in bananaobj.m. The fsolve function generates the following output:
 Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

 0 1 8563.84 615 1

 1 2 3093.71 1 329 1

 2 3 225.104 2.5 34.8 2.5

 3 4 212.48 6.25 34.1 6.25

 4 5 212.48 6.25 34.1 6.25

 5 6 102.771 1.5625 6.39 1.56

 6 7 102.771 3.90625 6.39 3.91

 7 8 87.7443 0.976563 2.19 0.977

 8 9 74.1426 2.44141 6.27 2.44

 9 10 74.1426 2.44141 6.27 2.44

 10 11 52.497 0.610352 1.52 0.61

 11 12 41.3297 1.52588 4.63 1.53

 12 13 34.5115 1.52588 6.97 1.53

 13 14 16.9716 1.52588 4.69 1.53

 14 15 8.16797 1.52588 3.77 1.53

 15 16 3.55178 1.52588 3.56 1.53

 16 17 1.38476 1.52588 3.31 1.53

 17 18 0.219553 1.16206 1.66 1.53

 18 19 0 0.0468565 0 1.53

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

11 Systems of Equations

11-12

Nonlinear Equations with Finite-Difference Jacobian

In the example “Nonlinear Equations with Analytic Jacobian” on page 11-9, the function
bananaobj evaluates F and computes the Jacobian J. What if the code to compute the
Jacobian is not available? By default, if you do not indicate that the Jacobian can be
computed in the objective function (by setting the Jacobian option in options to 'on'),
fsolve, lsqnonlin, and lsqcurvefit instead use finite differencing to approximate
the Jacobian. This is the default Jacobian option. You can select finite differencing by
setting Jacobian to 'off' using optimoptions.

This example uses bananaobj from the example “Nonlinear Equations with Analytic
Jacobian” on page 11-9 as the objective function, but sets Jacobian to 'off' so that
fsolve approximates the Jacobian and ignores the second bananaobj output.

n = 64;

x0(1:n,1) = -1.9;

x0(2:2:n,1) = 2;

options = optimoptions(@fsolve,'Display','iter','Jacobian','off');

[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

The example produces the following output:
 Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

 0 65 8563.84 615 1

 1 130 3093.71 1 329 1

 2 195 225.104 2.5 34.8 2.5

 3 260 212.48 6.25 34.1 6.25

 4 261 212.48 6.25 34.1 6.25

 5 326 102.771 1.5625 6.39 1.56

 6 327 102.771 3.90625 6.39 3.91

 7 392 87.7443 0.976562 2.19 0.977

 8 457 74.1426 2.44141 6.27 2.44

 9 458 74.1426 2.44141 6.27 2.44

 10 523 52.497 0.610352 1.52 0.61

 11 588 41.3297 1.52588 4.63 1.53

 12 653 34.5115 1.52588 6.97 1.53

 13 718 16.9716 1.52588 4.69 1.53

 14 783 8.16797 1.52588 3.77 1.53

 15 848 3.55178 1.52588 3.56 1.53

 16 913 1.38476 1.52588 3.31 1.53

 17 978 0.219553 1.16206 1.66 1.53

 18 1043 0 0.0468565 0 1.53

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

 Nonlinear Equations with Finite-Difference Jacobian

11-13

The finite-difference version of this example requires the same number of iterations to
converge as the analytic Jacobian version in the preceding example. It is generally the
case that both versions converge at about the same rate in terms of iterations. However,
the finite-difference version requires many additional function evaluations. The cost of
these extra evaluations might or might not be significant, depending on the particular
problem.

11 Systems of Equations

11-14

Nonlinear Equations with Jacobian

Consider the problem of finding a solution to a system of nonlinear equations whose
Jacobian is sparse. The dimension of the problem in this example is 1000. The goal is to
find x such that F(x) = 0. Assuming n = 1000, the nonlinear equations are

F x x x

F i x x x x

F n x x

i i i i

n

() ,

() ,

()

1 3 2 2 1

3 2 2 1

3 2

1 1
2

2

2
1 1

= - - +

= - - - +

= -

- +

nn n
x

2
1 1- +

-
.

To solve a large nonlinear system of equations, F(x) = 0, you can use the trust-region
reflective algorithm available in fsolve, a large-scale algorithm (“Large-Scale vs.
Medium-Scale Algorithms” on page 2-12).

Step 1: Write a file nlsf1.m that computes the objective function values
and the Jacobian.

function [F,J] = nlsf1(x)

% Evaluate the vector function

n = length(x);

F = zeros(n,1);

i = 2:(n-1);

F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;

F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;

F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;

% Evaluate the Jacobian if nargout > 1

if nargout > 1

 d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);

 c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);

 e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);

 J = C + D + E;

end

Step 2: Call the solve routine for the system of equations.

xstart = -ones(1000,1);

fun = @nlsf1;

options = optimoptions(@fsolve,'Display','iter',...

 'Algorithm','trust-region-reflective',...

 Nonlinear Equations with Jacobian

11-15

 'Jacobian','on','PrecondBandWidth',0);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

A starting point is given as well as the function name. The default method for fsolve
is trust-region-dogleg, so it is necessary to specify 'Algorithm' as 'trust-region-
reflective' in the options argument in order to select the trust-region-reflective
algorithm. Setting the Display option to 'iter' causes fsolve to display the output
at each iteration. Setting Jacobian to 'on', causes fsolve to use the Jacobian
information available in nlsf1.m.

The commands display this output:
 Norm of First-order

 Iteration Func-count f(x) step optimality

 0 1 1011 19

 1 2 16.1942 7.91898 2.35

 2 3 0.0228027 1.33142 0.291

 3 4 0.000103359 0.0433329 0.0201

 4 5 7.3792e-07 0.0022606 0.000946

 5 6 4.02299e-10 0.000268381 4.12e-05

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the default value

of the function tolerance. However, the last step was ineffective.

A linear system is (approximately) solved in each major iteration using the
preconditioned conjugate gradient method. Setting PrecondBandWidth to 0 in options
means a diagonal preconditioner is used. (PrecondBandWidth specifies the bandwidth
of the preconditioning matrix. A bandwidth of 0 means there is only one diagonal in the
matrix.)

From the first-order optimality values, fast linear convergence occurs. The number of
conjugate gradient (CG) iterations required per major iteration is low, at most five for
a problem of 1000 dimensions, implying that the linear systems are not very difficult to
solve in this case (though more work is required as convergence progresses).

If you want to use a tridiagonal preconditioner, i.e., a preconditioning matrix with three
diagonals (or bandwidth of one), set PrecondBandWidth to the value 1:

options = optimoptions(@fsolve,'Display','iter','Jacobian','on',...

 'Algorithm','trust-region-reflective','PrecondBandWidth',1);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case the output is
 Norm of First-order

11 Systems of Equations

11-16

 Iteration Func-count f(x) step optimality

 0 1 1011 19

 1 2 16.0839 7.92496 1.92

 2 3 0.0458181 1.3279 0.579

 3 4 0.000101184 0.0631898 0.0203

 4 5 3.16615e-07 0.00273698 0.00079

 5 6 9.72481e-10 0.00018111 5.82e-05

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the default value

of the function tolerance. However, the last step was ineffective.

Note that although the same number of iterations takes place, the number of PCG
iterations has dropped, so less work is being done per iteration. See “Preconditioned
Conjugate Gradient Method” on page 6-23.

Setting PrecondBandWidth to Inf (this is the default) means that the solver uses
Cholesky factorization rather than PCG.

 Nonlinear Equations with Jacobian Sparsity Pattern

11-17

Nonlinear Equations with Jacobian Sparsity Pattern

In the example “Nonlinear Equations with Analytic Jacobian” on page 11-9, the function
nlsf1 computes the Jacobian J, a sparse matrix, along with the evaluation of F. What if
the code to compute the Jacobian is not available? By default, if you do not indicate that
the Jacobian can be computed in nlsf1 (by setting the Jacobian option in options
to 'on'), fsolve, lsqnonlin, and lsqcurvefit instead uses finite differencing to
approximate the Jacobian.

In order for this finite differencing to be as efficient as possible, you should supply the
sparsity pattern of the Jacobian, by setting JacobPattern to a sparse matrix Jstr
in options. That is, supply a sparse matrix Jstr whose nonzero entries correspond
to nonzeros of the Jacobian for all x. Indeed, the nonzeros of Jstr can correspond to a
superset of the nonzero locations of J; however, in general the computational cost of the
sparse finite-difference procedure will increase with the number of nonzeros of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to compute the
finite differencing on large problems. If the sparsity pattern is not provided (and the
Jacobian is not computed in the objective function either) then, in this problem with 1000
variables, the finite-differencing code attempts to compute all 1000-by-1000 entries in
the Jacobian. But in this case there are only 2998 nonzeros, substantially less than the
1,000,000 possible nonzeros the finite-differencing code attempts to compute. In other
words, this problem is solvable if you provide the sparsity pattern. If not, most computers
run out of memory when the full dense finite-differencing is attempted. On most small
problems, it is not essential to provide the sparsity structure.

Suppose the sparse matrix Jstr, computed previously, has been saved in file
nlsdat1.mat. The following driver calls fsolve applied to nlsf1a, which is nlsf1
without the Jacobian. Sparse finite-differencing is used to estimate the sparse Jacobian
matrix as needed.

Step 1: Write a file nlsf1a.m that computes the objective function values.

function F = nlsf1a(x)

% Evaluate the vector function

n = length(x);

F = zeros(n,1);

i = 2:(n-1);

F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;

F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;

F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;

11 Systems of Equations

11-18

Step 2: Call the system of equations solve routine.

xstart = -ones(1000,1);

fun = @nlsf1a;

load nlsdat1 % Get Jstr

options = optimoptions(@fsolve,'Display','iter','JacobPattern',Jstr,...

 'Algorithm','trust-region-reflective','PrecondBandWidth',1);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case, the output displayed is
 Norm of First-order

 Iteration Func-count f(x) step optimality

 0 5 1011 19

 1 10 16.0839 7.92496 1.92

 2 15 0.0458179 1.3279 0.579

 3 20 0.000101184 0.0631896 0.0203

 4 25 3.16616e-07 0.00273698 0.00079

 5 30 9.72483e-10 0.00018111 5.82e-05

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the default value

of the function tolerance. However, the last step was ineffective.

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse QR
factorization) by indicating a “complete” preconditioner. For example, if you set
PrecondBandWidth to Inf, then a sparse direct linear solver is used instead of a
preconditioned conjugate gradient iteration:

xstart = -ones(1000,1);

fun = @nlsf1a;

load nlsdat1 % Get Jstr

options = optimoptions(@fsolve,'Display','iter','JacobPattern',Jstr,...

 'Algorithm','trust-region-reflective','PrecondBandWidth',inf);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

and the resulting display is
 Norm of First-order

 Iteration Func-count f(x) step optimality

 0 5 1011 19

 1 10 15.9018 7.92421 1.89

 2 15 0.0128161 1.32542 0.0746

 3 20 1.73502e-08 0.0397923 0.000196

 4 25 1.10716e-18 4.55495e-05 2.74e-09

Equation solved.

 Nonlinear Equations with Jacobian Sparsity Pattern

11-19

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

When the sparse direct solvers are used, the CG iteration is 0 for that (major) iteration,
as shown in the output under CG-Iterations. Notice that the final optimality and f(x)
value (which for fsolve, f(x), is the sum of the squares of the function values) are closer
to zero than using the PCG method, which is often the case.

11 Systems of Equations

11-20

Nonlinear Systems with Constraints

In this section...

“Solve Equations with Inequality Constraints” on page 11-20
“Use Different Start Points” on page 11-21
“Use Different Algorithms” on page 11-21
“Use lsqnonlin with Bounds” on page 11-22
“Set Equations and Inequalities as fmincon Constraints” on page 11-23

Solve Equations with Inequality Constraints

fsolve solves systems of nonlinear equations. However, it does not allow you to include
any constraints, even bound constraints. The question is, how can you solve systems of
nonlinear equations when you have constraints?

The short answer is, there are no guarantees that a solution exists that satisfies your
constraints. There is no guarantee that any solution exists, even one that does not
satisfy your constraints. Nevertheless, there are techniques that can help you search for
solutions that satisfy your constraints.

To illustrate the techniques, consider how to solve the equations

F x x x
x

x x

F x x x
x

1 1 1
2
2

2
2

2

2 2 2
1
2

1 10
1

1

2 20
1

1

()

()

= +() -()
+

+ +

= +() -()
+

+ xx x1
2

1+
,

where the components of x must be nonnegative. Clearly, there are four solutions to the
equations:
x = (–1,–2)
x = (10,–2),
x = (–1,20),
x = (10,20).

There is only one solution that satisfies the constraints, namely x = (10,20).

 Nonlinear Systems with Constraints

11-21

To solve the equations numerically, first enter code to calculate F(x).

function F = fbnd(x)

F(1) = (x(1)+1)*(10-x(1))*(1+x(2)^2)/(1+x(2)^2+x(2));

F(2) = (x(2)+2)*(20-x(2))*(1+x(1)^2)/(1+x(1)^2+x(1));

Save this code as the file fbnd.m on your MATLAB path.

Use Different Start Points

Generally, a system of N equations in N variables has isolated solutions, meaning each
solution has no nearby neighbors that are also solutions. So one way to search for a
solution that satisfies some constraints is to generate a number of initial points x0, and
run fsolve starting at each x0.

For this example, to look for a solution to Equation 11-9, take 10 random points that are
normally distributed with mean 0 and standard deviation 100.

rng default % for reproducibility

N = 10; % try 10 random start points

pts = 100*randn(N,2); % initial points are rows in pts

soln = zeros(N,2); % allocate solution

opts = optimoptions('fsolve','Display','off');

for k = 1:N

 soln(k,:) = fsolve(@fbnd,pts(k,:),opts); % find solutions

end

Examine the solutions in soln, and you find several that satisfy the constraints.

Use Different Algorithms

There are three fsolve algorithms. Each can lead to different solutions.

For this example, take x0 = [1,9] and examine the solution each algorithm returns.

x0 = [1,9];

opts = optimoptions(@fsolve,'Display','off',...

 'Algorithm','trust-region-dogleg');

x1 = fsolve(@fbnd,x0,opts)

x1 =

11 Systems of Equations

11-22

 -1.0000 -2.0000

opts.Algorithm = 'trust-region-reflective';

x2 = fsolve(@fbnd,x0,opts)

x2 =

 -1.0000 20.0000

opts.Algorithm = 'levenberg-marquardt';

x3 = fsolve(@fbnd,x0,opts)

x3 =

 0.9523 8.9941

Here, all three algorithms find different solutions for the same initial point. In fact, x3 is
not even a solution, but is simply a locally stationary point.

Use lsqnonlin with Bounds

lsqnonlin tries to minimize the sum of squares of the components of a vector function
F(x). Therefore, it attempts to solve the equation F(x) = 0. Furthermore, lsqnonlin
accepts bound constraints.

Formulate the example problem for lsqnonlin and solve it.

lb = [0,0];

rng default

x0 = 100*randn(2,1);

[x res] = lsqnonlin(@fbnd,x0,lb)

x =

 10.0000

 20.0000

res =

 2.4783e-25

 Nonlinear Systems with Constraints

11-23

You can use lsqnonlin with the Global Optimization Toolbox MultiStart solver
to search over many initial points automatically. See “MultiStart Using lsqcurvefit or
lsqnonlin”.

Set Equations and Inequalities as fmincon Constraints

You can reformulate the problem and use fmincon as follows:

• Give a constant objective function, such as @(x)0, which evaluates to 0 for each x.
• Set the fsolve objective function as the nonlinear equality constraints in fmincon.
• Give any other constraints in the usual fmincon syntax.

For this example, write a function file for the nonlinear inequality constraint.

function [c,ceq] = fminconstr(x)

c = []; % no nonlinear inequality

ceq = fbnd(x); % the fsolve objective is fmincon constraints

Save this code as the file fminconstr.m on your MATLAB path.

Solve the constrained problem.

lb = [0,0]; % lower bound constraint

rng default % reproducible initial point

x0 = 100*randn(2,1);

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');

x = fmincon(@(x)0,x0,[],[],[],[],lb,[],@fminconstr,opts)

x =

 10.0000

 20.0000

12

Parallel Computing for Optimization

• “Parallel Computing in Optimization Toolbox Functions” on page 12-2
• “Using Parallel Computing in Optimization Toolbox” on page 12-5
• “Minimizing an Expensive Optimization Problem Using Parallel Computing

Toolbox™” on page 12-8
• “Improving Performance with Parallel Computing” on page 12-15

12 Parallel Computing for Optimization

12-2

Parallel Computing in Optimization Toolbox Functions

In this section...

“Parallel Optimization Functionality” on page 12-2
“Parallel Estimation of Gradients” on page 12-2
“Nested Parallel Functions” on page 12-3

Parallel Optimization Functionality

Parallel computing is the technique of using multiple processors on a single problem. The
reason to use parallel computing is to speed computations.

The Optimization Toolbox solvers fmincon, fgoalattain, and fminimax can
automatically distribute the numerical estimation of gradients of objective functions and
nonlinear constraint functions to multiple processors. These solvers use parallel gradient
estimation under the following conditions:

• You have a license for Parallel Computing Toolbox software.
• The option GradObj is set to 'off', or, if there is a nonlinear constraint function, the

option GradConstr is set to 'off'. Since 'off' is the default value of these options,
you don't have to set them; just don't set them both to 'on'.

• Parallel computing is enabled with parpool, a Parallel Computing Toolbox function.
• The option UseParallel is set to true. The default value of this option is false.

When these conditions hold, the solvers compute estimated gradients in parallel.

Note: Even when running in parallel, a solver occasionally calls the objective and
nonlinear constraint functions serially on the host machine. Therefore, ensure that your
functions have no assumptions about whether they are evaluated in serial or parallel.

Parallel Estimation of Gradients

One subroutine was made parallel in the functions fmincon, fgoalattain, and
fminimax: the subroutine that estimates the gradient of the objective function and
constraint functions. This calculation involves computing function values at points near
the current location x. Essentially, the calculation is

 Parallel Computing in Optimization Toolbox Functions

12-3

—f x
f x e f x f x e f x f x e f xn n

n

()
() ()

,
() ()

, ,
() ()

ª
+ - + - + -D

D

D

D

D

D
1 1

1

2 2

2

…

ÈÈ

Î
Í

˘

˚
˙ ,

where

• f represents objective or constraint functions
• ei are the unit direction vectors
• Δi is the size of a step in the ei direction

To estimate ∇f(x) in parallel, Optimization Toolbox solvers distribute the evaluation of
(f(x + Δiei) – f(x))/Δi to extra processors.

Parallel Central Differences

You can choose to have gradients estimated by central finite differences instead of the
default forward finite differences. The basic central finite difference formula is

—f x
f x e f x e f x e f x en n n n

n

()
() ()

, ,
() ()

ª
+ - - + - -È

Î
Í

˘

˚

D D

D

D D

D
1 1 1 1

12 2
… ˙̇ .

This takes twice as many function evaluations as forward finite differences, but is
usually much more accurate. Central finite differences work in parallel exactly the same
as forward finite differences.

Enable central finite differences by using optimoptions to set the FinDiffType
option to 'central'. To use forward finite differences, set the FinDiffType option to
'forward'.

Nested Parallel Functions

Solvers employ the Parallel Computing Toolbox function parfor to perform parallel
estimation of gradients. parfor does not work in parallel when called from within
another parfor loop. Therefore, you cannot simultaneously use parallel gradient
estimation and parallel functionality within your objective or constraint functions.

Suppose, for example, your objective function userfcn calls parfor, and you wish to
call fmincon in a loop. Suppose also that the conditions for parallel gradient evaluation
of fmincon, as given in “Parallel Optimization Functionality” on page 12-2, are
satisfied. When parfor Runs In Parallel shows three cases:

12 Parallel Computing for Optimization

12-4

1 The outermost loop is parfor. Only that loop runs in parallel.
2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.
3 The outermost parfor loop is in userfcn. userfcn can use parfor in parallel.

...
parfor (i=1:10)
 x(i)=fmincon(@userfcn,...)
 ...
end

...
for (i=1:10)
 x(i)=fmincon(@userfcn,...)
 ...
end

...
for (i=1:10)
 x(i)=fmincon(@userfcn,...)
 ...
end

Only the outermost parfor loop
runs in parallel

If UseParallel = �always�
fmincon runs in parallel

If UseParallel = �never�
userfcn can use parfor in parallel

Bold indicates the function that runs in parallel

1

2

3

When parfor Runs In Parallel

 Using Parallel Computing in Optimization Toolbox

12-5

Using Parallel Computing in Optimization Toolbox

In this section...

“Using Parallel Computing with Multicore Processors” on page 12-5
“Using Parallel Computing with a Multiprocessor Network” on page 12-6
“Testing Parallel Computations” on page 12-7

Using Parallel Computing with Multicore Processors

If you have a multicore processor, you might see speedup using parallel processing.
You can establish a parallel pool of several workers with a Parallel Computing Toolbox
license. For a description of Parallel Computing Toolbox software, see “Getting Started
with Parallel Computing Toolbox”.

Suppose you have a dual-core processor, and want to use parallel computing:

• Enter

parpool

at the command line. MATLAB starts a pool of workers using the multicore processor.
If you had previously set a nondefault cluster profile, you can enforce multicore (local)
computing:

parpool('local')

Note: Depending on your preferences, MATLAB can start a parallel pool
automatically. To enable this feature, check Automatically create a parallel pool
in Home > Parallel > Parallel Preferences.

• • For command-line use, enter

options = optimoptions('solvername','UseParallel',true);

• For Optimization app, check Options > Approximated derivatives > Evaluate
in parallel.

When you run an applicable solver with options, applicable solvers automatically use
parallel computing.

To stop computing optimizations in parallel, set UseParallel to false, or set the
Optimization app not to compute in parallel. To halt all parallel computation, enter

12 Parallel Computing for Optimization

12-6

delete(gcp)

Using Parallel Computing with a Multiprocessor Network

If you have multiple processors on a network, use Parallel Computing Toolbox
functions and MATLAB Distributed Computing Server™ software to establish parallel
computation. Here are the steps to take:

1 Make sure your system is configured properly for parallel computing. Check
with your systems administrator, or refer to the Parallel Computing Toolbox
documentation.

To perform a basic check:

a At the command line, enter

parpool(prof)

where prof is your cluster profile.
b Workers must be able to access your objective function file and, if applicable,

your nonlinear constraint function file. There are two ways of ensuring access:

i Distribute the files to the workers using the parpool AttachedFiles
argument. For example, if objfun.m is your objective function file, and
constrfun.m is your nonlinear constraint function file, enter

parpool('AttachedFiles',{'objfun.m','constrfun.m'});

Workers access their own copies of the files.
ii Give a network file path to your files. If network_file_path is the

network path to your objective or constraint function files, enter

pctRunOnAll('addpath network_file_path')

Workers access the function files over the network.
c Check whether a file is on the path of every worker by entering

pctRunOnAll('which filename')

If any worker does not have a path to the file, it reports

filename not found.

2 • For command-line use, enter

 Using Parallel Computing in Optimization Toolbox

12-7

options = optimoptions('solvername','UseParallel',true);

• For Optimization app, check Options > Approximated derivatives >
Evaluate in parallel.

After you establish your parallel computing environment, applicable solvers
automatically use parallel computing whenever you call them with options.

To stop computing optimizations in parallel, set UseParallel to false, or set the
Optimization app not to compute in parallel. To halt all parallel computation, enter

delete(gcp)

Testing Parallel Computations

To test see if a problem runs correctly in parallel,

1 Try your problem without parallel computation to ensure that it runs properly
serially. Make sure this is successful (gives correct results) before going to the next
test.

2 Set UseParallel to true, and ensure that there is no parallel pool using
delete(gcp). Uncheck Automatically create a parallel pool in Home >
Parallel > Parallel Preferences so MATLAB does not create a parallel pool . Your
problem runs parfor serially, with loop iterations in reverse order from a for loop.
Make sure this is successful (gives correct results) before going to the next test.

3 Set UseParallel to true, and create a parallel pool using parpool. Unless you
have a multicore processor or a network set up, you won't see any speedup. This
testing is simply to verify the correctness of the computations.

Remember to call your solver using an options structure to test or use parallel
functionality.

12 Parallel Computing for Optimization

12-8

Minimizing an Expensive Optimization Problem Using Parallel
Computing Toolbox™

This example shows how to how to speed up the minimization of an expensive
optimization problem using functions in Optimization Toolbox™ and Global Optimization
Toolbox. In the first part of the example we solve the optimization problem by evaluating
functions in a serial fashion and in the second part of the example we solve the same
problem using the parallel for loop (parfor) feature by evaluating functions in parallel.
We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective
and constraint functions are made artificially expensive by pausing.

type expensive_objfun.m

type expensive_confun.m

function f = expensive_objfun(x)

%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

% Copyright 2007-2014 The MathWorks, Inc.

% $Revision: 1.1.8.2 $ $Date: 2013/05/04 00:47:14 $

% Simulate an expensive function by pausing

pause(0.1)

% Evaluate objective function

f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)

%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

% Copyright 2007-2014 The MathWorks, Inc.

% $Revision: 1.1.8.2 $ $Date: 2013/05/04 00:47:13 $

% Simulate an expensive function by pausing

pause(0.1);

% Evaluate constraints

c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);

 -x(1)*x(2) + x(4) - 10];

% No nonlinear equality constraints:

ceq = [];

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™

12-9

Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that we can
compare it to the parallel fmincon evaluation.

startPoint = [-1 1 1 -1];

options = optimoptions('fmincon','Display','iter','Algorithm','sqp');

startTime = tic;

xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);

time_fmincon_sequential = toc(startTime);

fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequential);

 Norm of First-order

 Iter F-count f(x) Feasibility Steplength step optimality

 0 5 1.839397e+00 1.500e+00 3.311e+00

 1 12 -8.841073e-01 4.019e+00 4.900e-01 2.335e+00 7.015e-01

 2 17 -1.382832e+00 0.000e+00 1.000e+00 1.142e+00 9.272e-01

 3 22 -2.241952e+00 0.000e+00 1.000e+00 2.447e+00 1.481e+00

 4 27 -3.145762e+00 0.000e+00 1.000e+00 1.756e+00 5.464e+00

 5 32 -5.277523e+00 6.413e+00 1.000e+00 2.224e+00 1.357e+00

 6 37 -6.310709e+00 0.000e+00 1.000e+00 1.099e+00 1.309e+00

 7 43 -6.447956e+00 0.000e+00 7.000e-01 2.191e+00 3.631e+00

 8 48 -7.135133e+00 0.000e+00 1.000e+00 3.719e-01 1.205e-01

 9 53 -7.162732e+00 0.000e+00 1.000e+00 4.083e-01 2.935e-01

 10 58 -7.178390e+00 0.000e+00 1.000e+00 1.591e-01 3.110e-02

 11 63 -7.180399e+00 1.191e-05 1.000e+00 2.644e-02 1.553e-02

 12 68 -7.180408e+00 0.000e+00 1.000e+00 1.140e-02 5.584e-03

 13 73 -7.180411e+00 0.000e+00 1.000e+00 1.764e-03 4.677e-04

 14 78 -7.180412e+00 0.000e+00 1.000e+00 8.827e-05 1.304e-05

 15 83 -7.180412e+00 0.000e+00 1.000e+00 1.528e-06 1.023e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Serial FMINCON optimization takes 18.1397 seconds.

Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we remove
the expensive constraint from this problem and perform unconstrained optimization

12 Parallel Computing for Optimization

12-10

instead; we pass empty ([]) for constraints. In addition, we limit the maximum number of
generations to 15 for ga so that ga can terminate in a reasonable amount of time. We are
interested in measuring the time taken by ga so that we can compare it to the parallel ga
evaluation. Note that running ga requires Global Optimization Toolbox.

rng default % for reproducibility

try

 gaAvailable = false;

 nvar = 4;

 gaoptions = gaoptimset('Generations',15,'Display','iter');

 startTime = tic;

 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);

 time_ga_sequential = toc(startTime);

 fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential);

 gaAvailable = true;

catch ME

 warning(message('optimdemos:optimparfor:gaNotFound'));

end

 Best Mean Stall

Generation f-count f(x) f(x) Generations

 1 100 -6.433e+16 -1.287e+15 0

 2 150 -1.501e+17 -7.138e+15 0

 3 200 -7.878e+26 -1.576e+25 0

 4 250 -8.664e+27 -1.466e+26 0

 5 300 -1.096e+28 -2.062e+26 0

 6 350 -5.422e+33 -1.145e+32 0

 7 400 -1.636e+36 -3.316e+34 0

 8 450 -2.933e+36 -1.513e+35 0

 9 500 -1.351e+40 -2.705e+38 0

 10 550 -1.351e+40 -7.9e+38 1

 11 600 -2.07e+40 -2.266e+39 0

 12 650 -1.845e+44 -3.696e+42 0

 13 700 -2.893e+44 -1.687e+43 0

 14 750 -5.076e+44 -6.516e+43 0

 15 800 -8.321e+44 -2.225e+44 0

Optimization terminated: maximum number of generations exceeded.

Serial GA optimization takes 87.3686 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate
derivatives is done in parallel using the parfor feature if Parallel Computing Toolbox

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™

12-11

is available and there is a parallel pool of workers. Similarly, ga, gamultiobj,
and patternsearch solvers in Global Optimization Toolbox evaluate functions in
parallel. To use the parfor feature, we use the parpool function to set up the parallel
environment. The computer on which this example is published has four cores, so
parpool starts four MATLAB® workers. If there is already a parallel pool when you run
this example, we use that pool; see the documentation for parpool for more information.

if max(size(gcp)) == 0 % parallel pool needed

 parpool % create the parallel pool

end

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function,
we need to explicitly indicate that our objective and constraint functions can be evaluated
in parallel and that we want fmincon to use its parallel functionality wherever possible.
Currently, finite differencing can be done in parallel. We are interested in measuring the
time taken by fmincon so that we can compare it to the serial fmincon run.

options = optimoptions(options,'UseParallel',true);

startTime = tic;

xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);

time_fmincon_parallel = toc(startTime);

fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_parallel);

 Norm of First-order

 Iter F-count f(x) Feasibility Steplength step optimality

 0 5 1.839397e+00 1.500e+00 3.311e+00

 1 12 -8.841073e-01 4.019e+00 4.900e-01 2.335e+00 7.015e-01

 2 17 -1.382832e+00 0.000e+00 1.000e+00 1.142e+00 9.272e-01

 3 22 -2.241952e+00 0.000e+00 1.000e+00 2.447e+00 1.481e+00

 4 27 -3.145762e+00 0.000e+00 1.000e+00 1.756e+00 5.464e+00

 5 32 -5.277523e+00 6.413e+00 1.000e+00 2.224e+00 1.357e+00

 6 37 -6.310709e+00 0.000e+00 1.000e+00 1.099e+00 1.309e+00

 7 43 -6.447956e+00 0.000e+00 7.000e-01 2.191e+00 3.631e+00

 8 48 -7.135133e+00 0.000e+00 1.000e+00 3.719e-01 1.205e-01

 9 53 -7.162732e+00 0.000e+00 1.000e+00 4.083e-01 2.935e-01

 10 58 -7.178390e+00 0.000e+00 1.000e+00 1.591e-01 3.110e-02

 11 63 -7.180399e+00 1.191e-05 1.000e+00 2.644e-02 1.553e-02

 12 68 -7.180408e+00 0.000e+00 1.000e+00 1.140e-02 5.584e-03

 13 73 -7.180411e+00 0.000e+00 1.000e+00 1.764e-03 4.677e-04

 14 78 -7.180412e+00 0.000e+00 1.000e+00 8.827e-05 1.304e-05

 15 83 -7.180412e+00 0.000e+00 1.000e+00 1.528e-06 1.023e-07

12 Parallel Computing for Optimization

12-12

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Parallel FMINCON optimization takes 8.78988 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function, we need to
explicitly indicate that our objective function can be evaluated in parallel and that we
want ga to use its parallel functionality wherever possible. To use the parallel ga we
also require that the 'Vectorized' option be set to the default (i.e., 'off'). We are again
interested in measuring the time taken by ga so that we can compare it to the serial ga
run. Though this run may be different from the serial one because ga uses a random
number generator, the number of expensive function evaluations is the same in both
runs. Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run

if gaAvailable

 gaoptions = gaoptimset(gaoptions,'UseParallel',true);

 startTime = tic;

 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);

 time_ga_parallel = toc(startTime);

 fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel);

end

 Best Mean Stall

Generation f-count f(x) f(x) Generations

 1 100 -6.433e+16 -1.287e+15 0

 2 150 -1.501e+17 -7.138e+15 0

 3 200 -7.878e+26 -1.576e+25 0

 4 250 -8.664e+27 -1.466e+26 0

 5 300 -1.096e+28 -2.062e+26 0

 6 350 -5.422e+33 -1.145e+32 0

 7 400 -1.636e+36 -3.316e+34 0

 8 450 -2.933e+36 -1.513e+35 0

 9 500 -1.351e+40 -2.705e+38 0

 10 550 -1.351e+40 -7.9e+38 1

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox™

12-13

 11 600 -2.07e+40 -2.266e+39 0

 12 650 -1.845e+44 -3.696e+42 0

 13 700 -2.893e+44 -1.687e+43 0

 14 750 -5.076e+44 -6.516e+43 0

 15 800 -8.321e+44 -2.225e+44 0

Optimization terminated: maximum number of generations exceeded.

Parallel GA optimization takes 23.707 seconds.

Compare Serial and Parallel Time

X = [time_fmincon_sequential time_fmincon_parallel];

Y = [time_ga_sequential time_ga_parallel];

t = [0 1];

plot(t,X,'r--',t,Y,'k-')

ylabel('Time in seconds')

legend('fmincon','ga')

ax = gca;

ax.XTick = [0 1];

ax.XTickLabel = {'Serial' 'Parallel'};

axis([0 1 0 ceil(max([X Y]))])

title('Serial Vs. Parallel Times')

12 Parallel Computing for Optimization

12-14

Utilizing parallel function evaluation via parfor improved the efficiency of both
fmincon and ga. The improvement is typically better for expensive objective and
constraint functions.

At last we delete the parallel pool.

if max(size(gcp)) > 0 % parallel pool exists

 delete(gcp) % delete the pool

end

Parallel pool using the 'local' profile is shutting down.

 Improving Performance with Parallel Computing

12-15

Improving Performance with Parallel Computing

In this section...

“Factors That Affect Speed” on page 12-15
“Factors That Affect Results” on page 12-15
“Searching for Global Optima” on page 12-16

Factors That Affect Speed

Some factors may affect the speed of execution of parallel processing:

• Parallel overhead. There is overhead in calling parfor instead of for. If function
evaluations are fast, this overhead could become appreciable. In particular, solving a
problem in parallel can be slower than solving the problem serially.

• No nested parfor loops. This is described in “Nested Parallel Functions” on page
12-3. parfor does not work in parallel when called from within another parfor loop.
If you have programmed your objective or constraint functions to take advantage
of parallel processing, the limitation of no nested parfor loops may cause a solver
to run more slowly than you expect. In particular, the parallel computation of finite
differences takes precedence, since that is an outer loop. This causes any parallel code
within the objective or constraint functions to execute serially.

• When executing serially, parfor loops run slower than for loops. Therefore, for
best performance, ensure that only your outermost parallel loop calls parfor.
For example, suppose your code calls fmincon within a parfor loop. For best
performance in this case, set the fmincon UseParallel option to false.

• Passing parameters. Parameters are automatically passed to worker machines during
the execution of parallel computations. If there are a large number of parameters, or
they take a large amount of memory, passing them may slow the execution of your
computation.

• Contention for resources: network and computing. If the network of worker machines
has low bandwidth or high latency, computation could be slowed.

Factors That Affect Results

Some factors may affect numerical results when using parallel processing. There are
more caveats related to parfor listed in the “parfor Limitations” section of the Parallel
Computing Toolbox documentation.

12 Parallel Computing for Optimization

12-16

• Persistent or global variables. If your objective or constraint functions use persistent
or global variables, these variables may take different values on different worker
processors. Furthermore, they may not be cleared properly on the worker processors.

• Accessing external files. External files may be accessed in an unpredictable fashion
during a parallel computation. The order of computations is not guaranteed during
parallel processing, so external files may be accessed in unpredictable order, leading
to unpredictable results.

• Accessing external files. If two or more processors try to read an external file
simultaneously, the file may become locked, leading to a read error, and halting the
execution of the optimization.

• If your objective function calls Simulink, results may be unreliable with parallel
gradient estimation.

• Noncomputational functions, such as input, plot, and keyboard, might behave
badly when used in objective or constraint functions. When called in a parfor loop,
these functions are executed on worker machines. This can cause a worker to become
nonresponsive, since it is waiting for input.

• parfor does not allow break or return statements.

Searching for Global Optima

To search for global optima, one approach is to evaluate a solver from a variety of initial
points. If you distribute those evaluations over a number of processors using the parfor
function, you disable parallel gradient estimation, since parfor loops cannot be nested.
Your optimization usually runs more quickly if you distribute the evaluations over all
the processors, rather than running them serially with parallel gradient estimation, so
disabling parallel estimation probably won't slow your computation. If you have more
processors than initial points, though, it is not clear whether it is better to distribute
initial points or to enable parallel gradient estimation.

If you have a Global Optimization Toolbox license, you can use the MultiStart solver
to examine multiple start points in parallel. See “Parallel Computing” and “Parallel
MultiStart” in the Global Optimization Toolbox documentation.

13

Argument and Options Reference

• “Function Arguments” on page 13-2
• “Optimization Options Reference” on page 13-7
• “intlinprog Output Functions and Plot Functions” on page 13-30

13 Argument and Options Reference

13-2

Function Arguments

In this section...

“Input Arguments” on page 13-2
“Output Arguments” on page 13-4

Input Arguments

Argument Description Used by Functions

A, b The matrix A and vector b are,
respectively, the coefficients of the
linear inequality constraints and the
corresponding right-side vector: A*x
≤ b.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqlin,
quadprog

Aeq, beq The matrix Aeq and vector beq are,
respectively, the coefficients of the
linear equality constraints and the
corresponding right-side vector:
Aeq*x = beq.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqlin,
quadprog

C, d The matrix C and vector d are,
respectively, the coefficients of the
over or underdetermined linear
system and the right-side vector to
be solved.

lsqlin, lsqnonneg

f The vector of coefficients for the
linear term in the linear equation
f'*x or the quadratic equation
x'*H*x+f'*x.

linprog, quadprog

fun The function to be optimized. fun is
either a function handle to a file or
is an anonymous function. See the
individual function reference pages
for more information on fun.

fgoalattain, fminbnd, fmincon,
fminimax, fminsearch, fminunc,
fseminf, fsolve, fzero,
lsqcurvefit, lsqnonlin

goal Vector of values that the objectives
attempt to attain. The vector is

fgoalattain

 Function Arguments

13-3

Argument Description Used by Functions

the same length as the number of
objectives.

H The matrix of coefficients for the
quadratic terms in the quadratic
equation x'*H*x+f'*x. H must be
symmetric.

quadprog

lb, ub Lower and upper bound vectors
(or matrices). The arguments
are normally the same size as x.
However, if lb has fewer elements
than x, say only m, then only the
first m elements in x are bounded
below; upper bounds in ub can
be defined in the same manner.
You can also specify unbounded
variables using -Inf (for lower
bounds) or Inf (for upper bounds).
For example, if lb(i) = -Inf, the
variable x(i) is unbounded below.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, quadprog

nonlcon The function that computes the
nonlinear inequality and equality
constraints. “Passing Extra
Parameters” on page 2-50 explains
how to parameterize the function
nonlcon, if necessary.

See the individual reference pages
for more information on nonlcon.

fgoalattain, fmincon, fminimax

ntheta The number of semi-infinite
constraints.

fseminf

options A structure that defines options
used by the optimization functions.
For information about the options,
see “Optimization Options
Reference” on page 13-7 or the
individual function reference pages.

All functions

13 Argument and Options Reference

13-4

Argument Description Used by Functions

seminfcon The function that computes the
nonlinear inequality and equality
constraints and the semi-infinite
constraints. seminfcon is the
name of a function file or MEX-file.
“Passing Extra Parameters” on page
2-50 explains how to parameterize
seminfcon, if necessary.

See the function reference pages for
fseminf for more information on
seminfcon.

fseminf

weight A weighting vector to control
the relative underattainment or
overattainment of the objectives.

fgoalattain

xdata, ydata The input data xdata and the
observed output data ydata that are
to be fitted to an equation.

lsqcurvefit

x0 Starting point (a scalar, vector or
matrix).

(For fzero, x0 can also be a two-
element vector representing a finite
interval that is known to contain a
zero.)

All functions except fminbnd

x1, x2 The interval over which the function
is minimized.

fminbnd

Output Arguments

Argument Description Used by Functions

attainfactor The attainment factor at the
solution x.

fgoalattain

exitflag An integer identifying the reason
the optimization algorithm
terminated. See the function

All functions

 Function Arguments

13-5

Argument Description Used by Functions

reference pages for descriptions of
exitflag specific to each function,
and “Exit Flags and Exit Messages”
on page 3-3.

You can also return a message
stating why an optimization
terminated by calling the
optimization function with the
output argument output and then
displaying output.message.

fval The value of the objective function
fun at the solution x.

fgoalattain, fminbnd, fmincon,
fminimax, fminsearch, fminunc,
fseminf, fsolve, fzero, linprog,
quadprog

grad The value of the gradient of fun
at the solution x. If fun does not
compute the gradient, grad is a
finite-differencing approximation of
the gradient.

fmincon, fminunc

hessian The value of the Hessian of fun
at the solution x. For large-scale
methods, if fun does not compute
the Hessian, hessian is a finite-
differencing approximation of the
Hessian. For the quasi-newton,
active-set, or sqp methods,
hessian is the value of the Quasi-
Newton approximation to the
Hessian at the solution x. See
“Hessian” on page 3-26.

fmincon, fminunc

jacobian The value of the Jacobian of fun
at the solution x. If fun does not
compute the Jacobian, jacobian is
a finite-differencing approximation
of the Jacobian.

lsqcurvefit, lsqnonlin, fsolve

13 Argument and Options Reference

13-6

Argument Description Used by Functions

lambda The Lagrange multipliers at the
solution x, see “Lagrange Multiplier
Structures” on page 3-25. lambda
is a structure where each field
is for a different constraint type.
For structure field names, see
individual function descriptions.
(For lsqnonneg, lambda is simply
a vector, as lsqnonneg only handles
one kind of constraint.)

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, lsqnonneg,
quadprog

maxfval max{fun(x)} at the solution x. fminimax

output An output structure that contains
information about the results of
the optimization, see “Output
Structures” on page 3-24. For
structure field names, see individual
function descriptions.

All functions

residual The value of the residual at the
solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

resnorm The value of the squared 2-norm of
the residual at the solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

x The solution found by the
optimization function. If exitflag
> 0, then x is a solution; otherwise,
x is the value of the optimization
routine when it terminated
prematurely.

All functions

 Optimization Options Reference

13-7

Optimization Options Reference

In this section...

“Optimization Options” on page 13-7
“Output Function” on page 13-20
“Plot Functions” on page 13-29

Optimization Options

The following table describes optimization options. Create options using the
optimoptions function, or optimset for fminbnd, fminsearch, fzero, or
lsqnonneg.

See the individual function reference pages for information about available option values
and defaults.

The default values for the options vary depending on which optimization function you
call with options as an input argument. You can determine the default option values
for any of the optimization functions by entering optimoptions(@solvername) or the
equivalent optimoptions('solvername'). For example,

optimoptions(@fmincon)

returns a list of the options and the default values for the default 'interior-point'
fmincon algorithm. To find the default values for another fmincon algorithm, set the
Algorithm option. For example,

opts = optimoptions(@fmincon,'Algorithm','sqp')

Optimization Options

Option Name Description Used by Functions Restrictions

Algorithm Chooses the algorithm used by
the solver.

fmincon, fminunc,
fsolve, linprog,
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

AlwaysHonorConstraintsThe default 'bounds' ensures
that bound constraints are

fmincon

13 Argument and Options Reference

13-8

Option Name Description Used by Functions Restrictions

satisfied at every iteration. Turn
off by setting to 'none'.

BranchingRule Rule for choosing the component
for branching:

• 'maxpscost' — The
fractional component with
maximum pseudocost. See
“Branch and Bound” on page
8-42.

• 'mostfractional' — The
component whose fractional
part is closest to 1/2.

• 'maxfun' — The fractional
component with maximal
corresponding component
in the absolute value of
objective vector f.

intlinprog optimoptions

only

CutGeneration Level of cut generation (see “Cut
Generation” on page 8-40):

• 'none' — No cuts. Makes
CutGenerationMaxIter

irrelevant.
• 'basic' — Normal cut

generation.
• 'intermediate' — Use

more cut types.
• 'advanced' — Use most cut

types.

intlinprog optimoptions

only

CutGenMaxIter Number of passes through
all cut generation methods
before entering the branch-
and-bound phase, an integer
from 1 through 50. Disable
cut generation by setting the

intlinprog optimoptions

only

 Optimization Options Reference

13-9

Option Name Description Used by Functions Restrictions

CutGeneration option to
'none'.

DerivativeCheck Compare user-supplied
analytic derivatives (gradients
or Jacobian, depending on
the selected solver) to finite
differencing derivatives.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

Diagnostics Display diagnostic information
about the function to be
minimized or solved.

All but fminbnd,
fminsearch, fzero,
and lsqnonneg

DiffMaxChange Maximum change in variables
for finite differencing.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

DiffMinChange Minimum change in variables
for finite differencing.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

Display Level of display.

• 'off' displays no output.
• 'iter' displays output at

each iteration, and gives the
default exit message.

• 'iter-detailed' displays
output at each iteration,
and gives the technical exit
message.

• 'notify' displays output
only if the function does
not converge, and gives the
default exit message.

All. See the individual
function reference pages
for the values that
apply.

13 Argument and Options Reference

13-10

Option Name Description Used by Functions Restrictions

• 'notify-detailed'

displays output only if the
function does not converge,
and gives the technical exit
message.

• 'final' displays just the
final output, and gives the
default exit message.

• 'final-detailed' displays
just the final output, and
gives the technical exit
message.

FinDiffRelStep Scalar or vector step size factor
for finite differences. When you
set FinDiffRelStep to a vector
v, forward finite differences
steps delta are
delta = v.*sign

′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x)
except sign′(0) = 1. Central
finite differences are
delta =

v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep
expands to a vector. The default
is sqrt(eps) for forward finite
differences, and eps^(1/3) for
central finite differences.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

FinDiffType Finite differences, used to
estimate gradients, are either
'forward' (the default) , or
'central' (centered), which
takes twice as many function
evaluations but should be more
accurate. 'central' differences
might violate bounds during

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

 Optimization Options Reference

13-11

Option Name Description Used by Functions Restrictions

their evaluation in fmincon
interior-point evaluations if the
AlwaysHonorConstraints

option is set to 'none'.
FunValCheck Check whether objective

function and constraints values
are valid. 'on' displays an error
when the objective function or
constraints return a value that
is complex, NaN, or Inf.

Note: FunValCheck does
not return an error for Inf
when used with fminbnd,
fminsearch, or fzero, which
handle Inf appropriately.

'off' displays no error.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, lsqcurvefit,
lsqnonlin

GoalsExactAchieve Specify the number of objectives
required for the objective fun to
equal the goal goal. Objectives
should be partitioned into the
first few elements of F.

fgoalattain

GradConstr User-defined gradients for the
nonlinear constraints.

fgoalattain,
fmincon, fminimax

GradObj User-defined gradients for the
objective functions.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf

HessFcn Function handle to a user-
supplied Hessian (see “Hessian”
on page 14-60).

fmincon

Hessian If 'user-supplied', function
uses user-defined Hessian or
Hessian information (when

fmincon, fminunc

13 Argument and Options Reference

13-12

Option Name Description Used by Functions Restrictions

using HessMult), for the
objective function. If 'off',
function approximates the
Hessian using finite differences.

HessMult Handle to a user-supplied
Hessian multiply function.
For fmincon, ignored unless
Hessian is 'user-supplied'
or 'on'.

fmincon, fminunc,
quadprog

HessPattern Sparsity pattern of the Hessian
for finite differencing. The size
of the matrix is n-by-n, where n
is the number of elements in x0,
the starting point.

fmincon, fminunc

HessUpdate Quasi-Newton updating scheme. fminunc
Heuristics Algorithm for searching for

feasible points (see “Heuristics
for Finding Feasible Solutions”
on page 8-41):

• 'none'

• 'rss'

• 'round'

• 'rins'

intlinprog optimoptions

only

HeuristicsMaxNodes Strictly positive integer that
bounds the number of nodes
intlinprog can explore in its
branch-and-bound search for
feasible points. See “Heuristics
for Finding Feasible Solutions”
on page 8-41.

intlinprog optimoptions

only

InitBarrierParam Initial barrier value. fmincon
InitDamping Initial Levenberg-Marquardt

parameter.
fsolve, lsqcurvefit,
lsqnonlin

optimoptions

only

 Optimization Options Reference

13-13

Option Name Description Used by Functions Restrictions

InitialHessMatrix

This option will be
removed in a future
release.

Initial quasi-Newton matrix. fminunc optimset

only

InitialHessType

This option will be
removed in a future
release.

Initial quasi-Newton matrix
type.

fminunc optimset

only

InitTrustRegionRadiusInitial radius of the trust region. fmincon
IPPreprocess Types of integer preprocessing

(see “Mixed-Integer Program
Preprocessing” on page 8-40):

• 'none' — Use very few
integer preprocessing steps.

• 'basic' — Use a
moderate number of integer
preprocessing steps.

• 'advanced' — Use
all available integer
preprocessing steps.

intlinprog optimoptions

only

Jacobian If 'on', function uses user-
defined Jacobian or Jacobian
information (when using
JacobMult), for the objective
function. If 'off', function
approximates the Jacobian using
finite differences.

fsolve, lsqcurvefit,
lsqnonlin

JacobMult User-defined Jacobian multiply
function. Ignored unless
Jacobian is 'on' for fsolve,
lsqcurvefit, and lsqnonlin.

fsolve, lsqcurvefit,
lsqlin, lsqnonlin

JacobPattern Sparsity pattern of the Jacobian
for finite differencing. The size

fsolve, lsqcurvefit,
lsqnonlin

13 Argument and Options Reference

13-14

Option Name Description Used by Functions Restrictions

of the matrix is m-by-n, where m
is the number of values in the
first argument returned by the
user-specified function fun, and
n is the number of elements in
x0, the starting point.

LargeScale

Use Algorithm
instead

Use large-scale algorithm if
possible.

fminunc,
fsolve, linprog,
lsqcurvefit, lsqlin,
lsqnonlin

optimset

only

LPMaxIter Strictly positive integer, the
maximum number of simplex
algorithm iterations per node
during the branch-and-bound
process.

intlinprog optimoptions

only

LPPreprocess Type of preprocessing for the
solution to the relaxed linear
program (see “Linear Program
Preprocessing” on page 8-39):

• 'none' — No preprocessing.
• 'basic' — Use

preprocessing.

intlinprog optimoptions

only

MaxFunEvals Maximum number of function
evaluations allowed.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch, fminunc,
fseminf, fsolve,
lsqcurvefit,
lsqnonlin

MaxIter Maximum number of iterations
allowed.

All but fzero and
lsqnonneg

MaxNodes Strictly positive integer that is
the maximum number of nodes
the solver explores in its branch-
and-bound process.

intlinprog

 Optimization Options Reference

13-15

Option Name Description Used by Functions Restrictions

MaxNumFeasPoints Strictly positive integer.
intlinprog stops if it finds
MaxNumFeasPoints integer
feasible points.

intlinprog optimoptions

only

MaxPCGIter Maximum number of iterations
of preconditioned conjugate
gradients method allowed.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

MaxProjCGIter A tolerance for the number of
projected conjugate gradient
iterations; this is an inner
iteration, not the number of
iterations of the algorithm.

fmincon

MaxSQPIter Maximum number of iterations
of sequential quadratic
programming method allowed.

fgoalattain,
fmincon, fminimax

MaxTime Maximum amount of time
in seconds allowed for the
algorithm.

intlinprog, linprog

MeritFunction Use goal attainment/minimax
merit function (multiobjective)
vs. fmincon (single objective).

fgoalattain,
fminimax

MinAbsMax Number of F(x) to minimize the
worst case absolute values.

fminimax

NodeSelection Choose the node to explore next.

• 'simplebestproj' — Best
projection. See “Branch and
Bound” on page 8-42.

• 'minobj' — Explore the
node with the minimum
objective function.

• 'mininfeas' — Explore the
node with the minimal sum
of integer infeasibilities. See

intlinprog optimoptions

only

13 Argument and Options Reference

13-16

Option Name Description Used by Functions Restrictions

“Branch and Bound” on page
8-42.

ObjectiveCutOff Real greater than -Inf. The
default is Inf.

intlinprog optimoptions

only
ObjectiveLimit If the objective function value

goes below ObjectiveLimit
and the iterate is feasible, then
the iterations halt.

fmincon, fminunc,
quadprog

OutputFcn Specify one or more user-defined
functions that the optimization
function calls at each iteration.
See “Output Function” on page
13-20 or “intlinprog
Output Functions and Plot
Functions” on page 13-30.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, intlinprog,
lsqcurvefit,
lsqnonlin

PlotFcns Plots various measures of
progress while the algorithm
executes, select from predefined
plots or write your own.

• @optimplotx plots the
current point

• @optimplotfunccount

plots the function count
• @optimplotfval plots the

function value
• @optimplotconstrviolation

plots the maximum
constraint violation

• @optimplotresnorm plots
the norm of the residuals

• @optimplotfirstorderopt

plots the first-order of
optimality

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, intlinprog,
lsqcurvefit,
lsqnonlin. See the
individual function
reference pages for the
values that apply.

 Optimization Options Reference

13-17

Option Name Description Used by Functions Restrictions

• @optimplotstepsize plots
the step size

• @optimplotmilp plots the
gap for mixed-integer linear
programs

See “Plot Functions” on page
13-29 or “intlinprog
Output Functions and Plot
Functions” on page 13-30.

PrecondBandWidth Upper bandwidth of
preconditioner for PCG.
Setting to 'Inf' uses a direct
factorization instead of CG.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

Preprocess Level of LP preprocessing prior
to simplex or dual simplex
algorithm iterations.

linprog optimoptions

only

RelLineSrchBnd Relative bound on line search
step length.

fgoalattain,
fmincon, fminimax,
fseminf

RelLineSrchBndDurationNumber of iterations for
which the bound specified in
RelLineSrchBnd should be
active.

fgoalattain,
fmincon, fminimax,
fseminf

RelObjThreshold Nonnegative real. intlinprog
changes the current feasible
solution only when it locates
another with an objective
function value that is at least
RelObjThreshold lower:
(fold – fnew)/(1 + fold) >
RelObjThreshold.

intlinprog optimoptions

only

RootLPAlgorithm Algorithm for solving linear
programs:

intlinprog optimoptions

only

13 Argument and Options Reference

13-18

Option Name Description Used by Functions Restrictions

• 'dual-simplex' — Dual
simplex algorithm

• 'primal-simplex' —
Primal simplex algorithm

RootLPMaxIter Nonnegative integer that is the
maximum number of simplex
algorithm iterations to solve
the initial linear programming
problem.

intlinprog optimoptions

only

ScaleProblem For fmincon interior-point
and sqp algorithms, 'obj-and-
constr' causes the algorithm
to normalize all constraints and
the objective function by their
initial values. Disable by setting
to the default 'none'.

For the other solvers, when
using the Algorithm option
'levenberg-marquardt',
setting the ScaleProblem
option to 'jacobian'
sometimes helps the solver on
badly-scaled problems.

fmincon, fsolve,
lsqcurvefit,
lsqnonlin, quadprog

Simplex

Use Algorithm
instead

If 'on', function uses the
simplex algorithm.

linprog optimset

only

SubproblemAlgorithmDetermines how the iteration
step is calculated.

fmincon

TolCon Tolerance on the constraint
violation.

fgoalattain,
fmincon, fminimax,
fseminf, intlinprog,
linprog, lsqlin,
quadprog

 Optimization Options Reference

13-19

Option Name Description Used by Functions Restrictions

TolConSQP Constraint violation tolerance
for the inner SQP iteration.

fgoalattain,
fmincon, fminimax,
fseminf

TolFun Termination tolerance on the
function value.

fgoalattain,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
linprog (interior-
point only),
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

TolFunLP Nonnegative real where reduced
costs must exceed TolFunLP for
a variable to be taken into the
basis.

intlinprog optimoptions

only

TolGapAbs Nonnegative real. intlinprog
stops if the difference between
the internally calculated upper
(U) and lower (L) bounds on the
objective function is less than or
equal to TolGapAbs:

U – L <= TolGapAbs.

intlinprog optimoptions

only

TolGapRel Real from 0 through 1.
intlinprog stops if the
relative difference between the
internally calculated upper (U)
and lower (L) bounds on the
objective function is less than or
equal to TolGapRel:

(U – L) / (abs(U) + 1) <=

TolGapRel.

intlinprog optimoptions

only

TolInteger Real from 1e-6 through 1e-3,
where the maximum deviation
from integer that a component

intlinprog optimoptions

only

13 Argument and Options Reference

13-20

Option Name Description Used by Functions Restrictions

of the solution x can have and
still be considered an integer.
TolInteger is not a stopping
criterion.

TolPCG Termination tolerance on the
PCG iteration.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

TolProjCG A relative tolerance for projected
conjugate gradient algorithm;
this is for an inner iteration, not
the algorithm iteration.

fmincon

TolProjCGAbs Absolute tolerance for projected
conjugate gradient algorithm;
this is for an inner iteration, not
the algorithm iteration.

fmincon

TolX Termination tolerance on x. All functions except
linprog and lsqlin,
and the quadprog
'active-set'

algorithm

TypicalX Array that specifies typical
magnitude of array of
parameters x. The size of the
array is equal to the size of x0,
the starting point. Primarily
for scaling finite differences for
gradient estimation.

fgoalattain,
fmincon, fminimax,
fminunc, fsolve,
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

UseParallel When true, applicable solvers
estimate gradients in parallel.
Disable by setting to false.

fgoalattain,
fmincon, fminimax.

Output Function

The Outputfcn field of options specifies one or more functions that an optimization
function calls at each iteration. Typically, you might use an output function to plot points

 Optimization Options Reference

13-21

at each iteration or to display optimization quantities from the algorithm. Using an
output function you can view, but not set, optimization quantities.

Caution intlinprog output functions and plot functions differ from those in other
solvers. See “intlinprog Output Functions and Plot Functions” on page 13-30.

To set up an output function, do the following:

1 Write the output function as a function file or local function.
2 Use optimoptions to set the value of Outputfcn to be a function handle, that is,

the name of the function preceded by the @ sign. For example, if the output function
is outfun.m, the command

 options = optimoptions(@solvername,'OutputFcn', @outfun);

specifies OutputFcn to be the handle to outfun. To specify more than one output
function, use the syntax

 options = optimoptions(@solvername,'OutputFcn',{@outfun, @outfun2});

3 Call the optimization function with options as an input argument.

See “Output Functions” on page 3-35 for an example of an output function.

“Passing Extra Parameters” on page 2-50 explains how to parameterize the output
function OutputFcn, if necessary.

Structure of the Output Function

The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• x is the point computed by the algorithm at the current iteration.
• optimValues is a structure containing data from the current iteration. “Fields in

optimValues” on page 13-22 describes the structure in detail.
• state is the current state of the algorithm. “States of the Algorithm” on page

13-28 lists the possible values.

13 Argument and Options Reference

13-22

• stop is a flag that is true or false depending on whether the optimization routine
should quit or continue. See “Stop Flag” on page 13-28 for more information.

The optimization function passes the values of the input arguments to outfun at each
iteration.

Fields in optimValues

The following table lists the fields of the optimValues structure. A particular
optimization function returns values for only some of these fields. For each field, the
Returned by Functions column of the table lists the functions that return the field.

Corresponding Output Arguments

Some of the fields of optimValues correspond to output arguments of the optimization
function. After the final iteration of the optimization algorithm, the value of such a
field equals the corresponding output argument. For example, optimValues.fval
corresponds to the output argument fval. So, if you call fmincon with an output
function and return fval, the final value of optimValues.fval equals fval. The
Description column of the following table indicates the fields that have a corresponding
output argument.

Command-Line Display

The values of some fields of optimValues are displayed at the command line when
you call the optimization function with the Display field of options set to 'iter',
as described in “Iterative Display” on page 3-16. For example, optimValues.fval is
displayed in the f(x) column. The Command-Line Display column of the following table
indicates the fields that you can display at the command line.

Some optimValues fields apply only to specific algorithms:

• AS — active-set
• D — trust-region-dogleg
• IP — interior-point
• LM — levenberg-marquardt
• Q — quasi-newton
• SQP — sqp
• TR — trust-region
• TRR — trust-region-reflective

 Optimization Options Reference

13-23

Some optimValues fields exist in certain solvers or algorithms, but are always filled
with empty or zero values, so are meaningless. These fields include:

• constrviolation for fminunc TR and fsolve TRR.
• procedure for fmincon TRR and SQP, and for fminunc.

optimValues Fields

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

attainfactor Attainment factor for
multiobjective problem.
For details, see “Goal
Attainment Method” on
page 7-3.

fgoalattain None

cgiterations Number of conjugate
gradient iterations at
current optimization
iteration.

fmincon (IP, TRR),
fminunc (TR), fsolve
(TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

CG-iterations

See “Iterative
Display” on page
3-16.

constrviolation Maximum constraint
violation.

fgoalattain,
fmincon, fminimax,
fseminf

fminunc TR and
fsolve TRR provide
blank field values.

Max constraint

or Feasibility

See “Iterative
Display” on page
3-16.

degenerate Measure of degeneracy. A
point is degenerate if

The partial derivative
with respect to one of
the variables is 0 at the
point.

A bound constraint is
active for that variable at
the point.

fmincon (TRR),
lsqcurvefit (TRR),
lsqnonlin (TRR)

None

13 Argument and Options Reference

13-24

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

See “Degeneracy” on page
13-27.

directionalderivativeDirectional derivative in
the search direction.

fgoalattain,
fmincon (AS),
fminimax, fminunc
(Q), fseminf, fsolve
(LM), lsqcurvefit
(LM), lsqnonlin (LM)

Directional

derivative

See “Iterative
Display” on page
3-16.

firstorderopt First-order optimality
(depends on algorithm).
Final value equals
optimization
function output
output.firstorderopt.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

First-order

optimality

See “Iterative
Display” on page
3-16.

funccount Cumulative number of
function evaluations.
Final value equals
optimization
function output
output.funcCount.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fsolve,
fzero, fseminf,
lsqcurvefit,
lsqnonlin

F-count or Func-
count

See “Iterative
Display” on page
3-16.

fval Function value at current
point. Final value equals
optimization function
output fval.

For fsolve, fval is the
vector function value, and
iterative display f(x) is
the squared norm of this
vector.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero

f(x)

See “Iterative
Display” on page
3-16.

gradient Current gradient of
objective function —
either analytic gradient

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,

None

 Optimization Options Reference

13-25

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

if you provide it or
finite-differencing
approximation. Final
value equals optimization
function output grad.

fsolve, lsqcurvefit,
lsqnonlin

iteration Iteration number —
starts at 0. Final value
equals optimization
function output
output.iterations.

fgoalattain,
fminbnd,fmincon,
fminimax,
fminsearch, fminunc,
fsolve, fseminf,
fzero, lsqcurvefit,
lsqnonlin

Iteration

See “Iterative
Display” on page
3-16.

lambda The Levenberg-
Marquardt parameter,
lambda, at the
current iteration. See
“Levenberg-Marquardt
Method” on page 10-7.

fsolve (LM),
lsqcurvefit (LM),
lsqnonlin (LM)

Lambda

lssteplength Actual step length
divided by initially
predicted step length

fmincon (AS, SQP),
fminunc (Q)

Steplength or
Line search

steplength or
Step-size

See “Iterative
Display” on page
3-16.

maxfval Maximum function value fminimax None
positivedefinite 0 if algorithm detects

negative curvature while
computing Newton step.

1 otherwise.

fmincon (TRR),
fminunc (TR), fsolve
(TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

None

procedure Procedure messages. fgoalattain,
fminbnd, fmincon

Procedure

13 Argument and Options Reference

13-26

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

(AS), fminimax,
fminsearch, fseminf,
fzero

fmincon TRR and SQP,
and fminunc provide
blank field values.

See “Iterative
Display” on page
3-16.

ratio Ratio of change in the
objective function to
change in the quadratic
approximation.

fmincon (TRR),
fminunc (TR), fsolve
(TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

None

residual The residual vector. lsqcurvefit,
lsqnonlin,

Residual

See “Iterative
Display” on page
3-16.

resnorm 2-norm of the residual
squared.

lsqcurvefit,
lsqnonlin

Resnorm

See “Iterative
Display” on page
3-16.

searchdirection Search direction. fgoalattain,
fmincon (AS, SQP),
fminimax, fminunc
(Q), fseminf, fsolve
(LM), lsqcurvefit
(LM), lsqnonlin (LM)

None

stepaccept Status of the current
trust-region step. Returns
true if the current
trust-region step was
successful, and false if
the trust-region step was
unsuccessful.

fsolve (D) None

 Optimization Options Reference

13-27

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

stepsize Current step size
(displacement in x). Final
value equals optimization
function output
output.stepsize.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

Step-size or
Norm of Step

See “Iterative
Display” on page
3-16.

trustregionradius Radius of trust region. fmincon (IP, TRR),
fminunc (TR), fsolve
(D, TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

Trust-region

radius

See “Iterative
Display” on page
3-16.

Degeneracy

The value of the field degenerate, which measures the degeneracy of the current
optimization point x, is defined as follows. First, define a vector r, of the same size as x,
for which r(i) is the minimum distance from x(i) to the ith entries of the lower and
upper bounds, lb and ub. That is,

r = min(abs(ub-x, x-lb))

Then the value of degenerate is the minimum entry of the vector r + abs(grad),
where grad is the gradient of the objective function. The value of degenerate is 0 if
there is an index i for which both of the following are true:

• grad(i) = 0

• x(i) equals the ith entry of either the lower or upper bound.

13 Argument and Options Reference

13-28

States of the Algorithm

The following table lists the possible values for state:

State Description

'init' The algorithm is in the initial state before the first iteration.
'interrupt' The algorithm is in some computationally expensive part of the

iteration. In this state, the output function can interrupt the
current iteration of the optimization. At this time, the values of x
and optimValues are the same as at the last call to the output
function in which state=='iter'.

'iter' The algorithm is at the end of an iteration.
'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function might use the value of state to
decide which tasks to perform at the current iteration:

switch state

 case 'iter'

 % Make updates to plot or guis as needed

 case 'interrupt'

 % Probably no action here. Check conditions to see

 % whether optimization should quit.

 case 'init'

 % Setup for plots or guis

 case 'done'

 % Cleanup of plots, guis, or final plot

otherwise

end

Stop Flag

The output argument stop is a flag that is true or false. The flag tells the
optimization function whether the optimization should quit or continue. The following
examples show typical ways to use the stop flag.

Stopping an Optimization Based on Data in optimValues

The output function can stop an optimization at any iteration based on the current data
in optimValues. For example, the following code sets stop to true if the directional
derivative is less than .01:

 Optimization Options Reference

13-29

function stop = outfun(x,optimValues,state)

stop = false;

% Check if directional derivative is less than .01.

if optimValues.directionalderivative < .01

 stop = true;

end

Stopping an Optimization Based on GUI Input

If you design a GUI to perform optimizations, you can make the output function stop
an optimization when a user clicks a Stop button on the GUI. The following code shows
how to do this, assuming that the Stop button callback stores the value true in the
optimstop field of a handles structure called hObject:

function stop = outfun(x,optimValues,state)

stop = false;

% Check if user has requested to stop the optimization.

stop = getappdata(hObject,'optimstop');

Plot Functions

The PlotFcns field of the options structure specifies one or more functions that an
optimization function calls at each iteration to plot various measures of progress while
the algorithm executes. The structure of a plot function is the same as that for an output
function. For more information on writing and calling a plot function, see “Output
Function” on page 13-20. For an example of using built-in plot functions, “Using a Plot
Function” on page 3-29.

To view a predefined plot function listed for PlotFcns, you can open it in the MATLAB
Editor. For example, to view the file corresponding to the norm of residuals, enter:

edit optimplotresnorm.m

You can use any predefined plot function as a template for writing a custom plot
function.

13 Argument and Options Reference

13-30

intlinprog Output Functions and Plot Functions

In this section...

“What Are Output Functions and Plot Functions?” on page 13-30
“Custom Function Syntax” on page 13-31
“optimValues Structure” on page 13-31

What Are Output Functions and Plot Functions?

intlinprog can call an output function or plot function after certain events occur in
the algorithm. These events include completing a phase of the algorithm such as solving
the root LP problem, adding cuts, finding a new integer feasible solution, appreciably
improving the relative gap, or exploring a number of nodes in a branch-and-bound tree.

Caution intlinprog output functions and plot functions differ from those in other
solvers. For output functions or plot functions in other Optimization Toolbox solvers, see
“Output Function” on page 13-20 and “Plot Functions” on page 13-29.

• There is one built-in output function: savemilpsolutions. This function collects
all the integer feasible points that the algorithm finds. It puts the feasible points in
a matrix named xIntSol in your base workspace, where each column is one integer
feasible point. It saves the objective function values in a vector named fIntSol,
where each entry is the objective function of the corresponding column in xIntSol.

• There is one built-in plot function: optimplotmilp. This function plots the
internally-calculated bounds on the best objective function value. For an example of
its use, see “Factory, Warehouse, Sales Allocation Model” on page 8-52.

Call output functions or plot functions by passing the OutputFcn or PlotFcns name-
value pairs, including the handle to the output function or plot function. For example,

options = optimoptions(@intlinprog,'OutputFcn',@savemilpsolutions,'PlotFcns',@optimplotmilp);

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options);

If you have several output functions or plot functions, pass them as a cell array.

options = optimoptions(@intlinprog,'OutputFcn',{@savemilpsolutions,@customFcn});

 intlinprog Output Functions and Plot Functions

13-31

Custom Function Syntax

Write your own output function or plot function using this syntax:

function stop = customFcn(x,optimValues,state)

intlinprog passes the data x, optimValues, and state to your function.

• stop — Set to true to halt intlinprog. Set to false to allow intlinprog to
continue.

• x — Either empty [] or an N-by-1 vector that is a feasible point. x is nonempty only
when intlinprog finds a new integer feasible solution. x can be nonempty when
phase is 'heuristics' or 'branching'.

• optimValues — A structure whose details are in “optimValues Structure” on page
13-31.

• state — A string containing one of these values:

• 'init' — intlinprog is starting. Use this state to set up any plots or data
structures that you need.

• 'iter' — intlinprog is solving the problem. Access data related to the solver’s
progress. For example, plot or perform file operations.

• 'done' — intlinprog has finished solving the problem. Close any files, finish
annotating plots, etc.

For examples of writing output or plot functions, see the built-in functions
savemilpsolutions.m or optimplotmilp.m.

optimValues Structure

optimValues Field Meaning

phase Phase of the algorithm. Possible values:

• 'rootlp' — intlinprog solved the root LP problem.
• 'cutgen' — intlinprog added cuts and improved the

lower bound.
• 'heuristics' — intlinprog found new feasible points

using heuristics.
• 'branching' — intlinprog is creating and exploring

nodes in a branch-and-bound tree.

13 Argument and Options Reference

13-32

optimValues Field Meaning

fval Best objective function found so far at an integer feasible point.
When phase = 'rootlp', fval is the objective function value
at the root node, which is not necessarily an integer feasible
point.

lowerbound Global lower bound of the objective function value. Empty when
phase = 'rootlp'.

relativegap Relative gap between lowerbound and fval. Empty when
phase = 'rootlp' or numfeaspoints = 0.

numnodes Number of explored nodes. Nonzero only when phase =
'branching'.

numfeaspoints Number of integer feasible solutions found.
time Time in seconds spent so far, measured with tic and toc from

the time when state = 'init'.

14

Functions — Alphabetical List

14 Functions — Alphabetical List

14-2

color
Column partition for sparse finite differences

Syntax

group = color(J,P)

Description

group = color(J,P) returns a partition of the column corresponding to a coloring of
the column-intersection graph. GROUP(I) = J means column I is colored J.

All columns belonging to a color can be estimated in a single finite difference.

 fgoalattain

14-3

fgoalattain
Solve multiobjective goal attainment problems

Equation

Finds the minimum of a problem specified by

minimize such that
x

F x weight goal

c x

ceq x

A x b,

()

()

()

g
g

g- ◊ £

£

=

◊ £

0

0

AAeq x beq

lb x ub

◊ =

£ £

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô .

weight, goal, b, and beq are vectors, A and Aeq are matrices, and c(x), ceq(x), and F(x) are
functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-30.

Syntax

x = fgoalattain(fun,x0,goal,weight)

x = fgoalattain(fun,x0,goal,weight,A,b)

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)

x =

fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)

x = fgoalattain(problem)

[x,fval] = fgoalattain(...)

[x,fval,attainfactor] = fgoalattain(...)

[x,fval,attainfactor,exitflag] = fgoalattain(...)

[x,fval,attainfactor,exitflag,output] = fgoalattain(...)

[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)

14 Functions — Alphabetical List

14-4

Description

fgoalattain solves the goal attainment problem, which is one formulation for
minimizing a multiobjective optimization problem.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective functions and nonlinear constraint functions, if necessary.

x = fgoalattain(fun,x0,goal,weight) tries to make the objective functions
supplied by fun attain the goals specified by goal by varying x, starting at x0, with
weight specified by weight.

x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal attainment problem
subject to the linear inequalities A*x ≤ b.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal attainment
problem subject to the linear equalities Aeq*x = beq as well. Set A = [] and b = [] if
no inequalities exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) defines a set of
lower and upper bounds on the design variables in x, so that the solution is always in the
range lb ≤ x ≤ ub.

Note: See “Iterations Can Violate Constraints” on page 2-32.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) subjects
the goal attainment problem to the nonlinear inequalities c(x) or nonlinear equality
constraints ceq(x) defined in nonlcon. fgoalattain optimizes such that c(x) ≤ 0
and ceq(x) = 0. Set lb = [] and/or ub = [] if no bounds exist.

x =

fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)

minimizes with the optimization options specified in options. Use optimoptions to set
these options.

x = fgoalattain(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-5.

 fgoalattain

14-5

Create the problem structure by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

[x,fval] = fgoalattain(...) returns the values of the objective functions
computed in fun at the solution x.

[x,fval,attainfactor] = fgoalattain(...) returns the attainment factor at
the solution x.

[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a value
exitflag that describes the exit condition of fgoalattain.

[x,fval,attainfactor,exitflag,output] = fgoalattain(...) returns a
structure output that contains information about the optimization.

[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)

returns a structure lambda whose fields contain the Lagrange multipliers at the solution
x.

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the output fval is [].

Input Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments passed
into fgoalattain. This section provides function-specific details for fun, goal,
nonlcon, options, weight, and problem:

fun The function to be minimized. fun is a function that accepts a vector
x and returns a vector F, the objective functions evaluated at x. The
function fun can be specified as a function handle for a function file:

x = fgoalattain(@myfun,x0,goal,weight)

where myfun is a MATLAB function such as

function F = myfun(x)

F = ... % Compute function values at x.

fun can also be a function handle for an anonymous function.

14 Functions — Alphabetical List

14-6

x = fgoalattain(@(x)sin(x.*x),x0,goal,weight);

If the user-defined values for x and F are matrices, they are converted to
a vector using linear indexing.

To make an objective function as near as possible to a goal value,
(i.e., neither greater than nor less than) use optimoptions to set
the GoalsExactAchieve option to the number of objectives required
to be in the neighborhood of the goal values. Such objectives must be
partitioned into the first elements of the vector F returned by fun.

If the gradient of the objective function can also be computed and the
GradObj option is 'on', as set by

options = optimoptions('fgoalattain','GradObj','on')

then the function fun must return, in the second output argument, the
gradient value G, a matrix, at x. The gradient consists of the partial
derivative dF/dx of each F at the point x. If F is a vector of length m
and x has length n, where n is the length of x0, then the gradient G of
F(x) is an n-by-m matrix where G(i,j) is the partial derivative of F(j)
with respect to x(i) (i.e., the jth column of G is the gradient of the jth
objective function F(j)).

Note: Setting GradObj to 'on' is effective only when there is no
nonlinear constraint, or when the nonlinear constraint has GradConstr
set to 'on' as well. This is because internally the objective is folded
into the constraints, so the solver needs both gradients (objective and
constraint) supplied in order to avoid estimating a gradient.

goal Vector of values that the objectives attempt to attain. The vector
is the same length as the number of objectives F returned by fun.
fgoalattain attempts to minimize the values in the vector F to attain
the goal values given by goal.

nonlcon

 fgoalattain

14-7

The function that computes the nonlinear inequality constraints c(x)
≤ 0 and the nonlinear equality constraints ceq(x) = 0. The function
nonlcon accepts a vector x and returns two vectors c and ceq. The
vector c contains the nonlinear inequalities evaluated at x, and ceq
contains the nonlinear equalities evaluated at x. The function nonlcon
can be specified as a function handle.
x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq,beq,...

 lb,ub,@mycon)

where mycon is a MATLAB function such as
function [c,ceq] = mycon(x)

c = ... % compute nonlinear inequalities at x.

ceq = ... % compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the
GradConstr option is 'on', as set by

options = optimoptions('fgoalattain','GradConstr','on')

then the function nonlcon must also return, in the third and fourth
output arguments, GC, the gradient of c(x), and GCeq, the gradient
of ceq(x). “Nonlinear Constraints” on page 2-35 explains how to
“conditionalize” the gradients for use in solvers that do not accept
supplied gradients.

If nonlcon returns a vector c of m components and x has length n,
where n is the length of x0, then the gradient GC of c(x) is an n-by-m
matrix, where GC(i,j) is the partial derivative of c(j) with respect
to x(i) (i.e., the jth column of GC is the gradient of the jth inequality
constraint c(j)). Likewise, if ceq has p components, the gradient
GCeq of ceq(x) is an n-by-p matrix, where GCeq(i,j) is the partial
derivative of ceq(j) with respect to x(i) (i.e., the jth column of GCeq
is the gradient of the jth equality constraint ceq(j)).

Note: Setting GradConstr to 'on' is effective only when GradObj is
set to 'on' as well. This is because internally the objective is folded
into the constraint, so the solver needs both gradients (objective and
constraint) supplied in order to avoid estimating a gradient.

14 Functions — Alphabetical List

14-8

Note Because Optimization Toolbox functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions
must return outputs of type double.

“Passing Extra Parameters” on page 2-50 explains how to parameterize
the nonlinear constraint function nonlcon, if necessary.

options “Options” on page 14-10 provides the function-specific details for the
options values.
A weighting vector to control the relative underattainment or
overattainment of the objectives in fgoalattain. When the values
of goal are all nonzero, to ensure the same percentage of under- or
overattainment of the active objectives, set the weighting function to
abs(goal). (The active objectives are the set of objectives that are
barriers to further improvement of the goals at the solution.)

Note Setting a component of the weight vector to zero will cause
the corresponding goal constraint to be treated as a hard constraint
rather than as a goal constraint. An alternative method to set a hard
constraint is to use the input argument nonlcon.

weight

When the weighting function weight is positive, fgoalattain
attempts to make the objectives less than the goal values. To make
the objective functions greater than the goal values, set weight to be
negative rather than positive. To make an objective function as near as
possible to a goal value, use the GoalsExactAchieve option and put
that objective as the first element of the vector returned by fun (see the
preceding description of fun and options).
objective Vector of objective functions
x0 Initial point for x
goal Goals to attain
weight Relative importance factors of goals
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints

problem

beq Vector for linear equality constraints

 fgoalattain

14-9

lb Vector of lower bounds
ub Vector of upper bounds
nonlcon Nonlinear constraint function
solver 'fgoalattain'

options Options created with optimoptions

Output Arguments
“Function Arguments” on page 13-2 contains general descriptions of arguments returned
by fgoalattain. This section provides function-specific details for attainfactor,
exitflag, lambda, and output:

attainfactor The amount of over- or underachievement of the goals.
attainfactor contains the value of γ at the solution. If
attainfactor is negative, the goals have been overachieved; if
attainfactor is positive, the goals have been underachieved.
Integer identifying the reason the algorithm terminated. The
following lists the values of exitflag and the corresponding
reasons the algorithm terminated.
1 Function converged to a solutions x.
4 Magnitude of the search direction less

than the specified tolerance and constraint
violation less than options.TolCon

5 Magnitude of directional derivative less
than the specified tolerance and constraint
violation less than options.TolCon

0 Number of iterations exceeded
options.MaxIter or number
of function evaluations exceeded
options.MaxFunEvals

-1 Stopped by an output function or plot
function.

exitflag

-2 No feasible point was found.
lambda Structure containing the Lagrange multipliers at the solution x

(separated by constraint type). The fields of the structure are

14 Functions — Alphabetical List

14-10

lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities
ineqnonlin Nonlinear inequalities
eqnonlin Nonlinear equalities
Structure containing information about the optimization. The fields
of the structure are
iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of final line search step relative to

search direction
stepsize Final displacement in x
algorithm Optimization algorithm used
firstorderopt Measure of first-order optimality
constrviolation Maximum of constraint functions

output

message Exit message

Options

Optimization options used by fgoalattain. Use optimoptions to set or change
options. See “Optimization Options Reference” on page 13-7 for detailed information.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on' or
the default, 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page
3-16):

 fgoalattain

14-11

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and

gives the default exit message.
• 'iter-detailed' displays output at each

iteration, and gives the technical exit message.
• 'notify' displays output only if the function

does not converge, and gives the default exit
message.

• 'notify-detailed' displays output only if
the function does not converge, and gives the
technical exit message.

• 'final' (default) displays just the final output,
and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor for finite
differences. When you set FinDiffRelStep to a
vector v, forward finite differences steps delta are
delta = v.*sign

′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) =
1. Central finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The
default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate gradients,
are either 'forward' (default), or 'central'
(centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. So, for
example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point
outside bounds.

14 Functions — Alphabetical List

14-12

FunValCheck Check whether objective function and constraints
values are valid. 'on' displays an error when the
objective function or constraints return a value
that is complex, Inf, or NaN. The default, 'off',
displays no error.

GoalsExactAchieve Specifies the number of objectives for which it is
required for the objective fun to equal the goal
goal (a nonnegative integer). Such objectives
should be partitioned into the first few elements of
F. The default is 0.

GradConstr Gradient for nonlinear constraint functions defined
by the user. When set to 'on', fgoalattain
expects the constraint function to have four
outputs, as described in nonlcon in the “Input
Arguments” on page 14-5 section. When set
to the default, 'off', gradients of the nonlinear
constraints are estimated by finite differences.

GradObj Gradient for the objective function defined by the
user. See the preceding description of fun to see
how to define the gradient in fun. Set to 'on' to
have fgoalattain use a user-defined gradient of
the objective function. The default, 'off', causes
fgoalattain to estimate gradients using finite
differences.

MaxFunEvals Maximum number of function evaluations
allowed (a positive integer). The default is
100*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-61 and “Iterations and
Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed (a positive
integer). The default is 400. See “Tolerances and
Stopping Criteria” on page 2-61 and “Iterations and
Function Counts” on page 3-10.

MaxSQPIter Maximum number of SQP iterations
allowed (a positive integer). The default
is 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds)

 fgoalattain

14-13

MeritFunction Use goal attainment/minimax merit function if set
to 'multiobj', the default. Use fmincon merit
function if set to 'singleobj'.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either
as a function handle or as a cell array of function
handles. The default is none ([]). See “Output
Function” on page 13-20.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point
• @optimplotfunccount plots the function

count
• @optimplotfval plots the function value
• @optimplotconstrviolation plots the

maximum constraint violation
• @optimplotstepsize plots the step size

For information on writing a custom plot function,
see “Plot Functions” on page 13-29.

RelLineSrchBnd Relative bound (a real nonnegative scalar
value) on the line search step length such
that the total displacement in x satisfies |
Δx(i)| ≤ relLineSrchBnd· max(|x(i)|,|typicalx(i)|).
This option provides control over the magnitude
of the displacements in x for cases in which the
solver takes steps that are considered too large. The
default is none ([]).

RelLineSrchBndDuration Number of iterations for which the bound specified
in RelLineSrchBnd should be active (default is 1).

TolCon Termination tolerance on the constraint violation,
a positive scalar. The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-61.

14 Functions — Alphabetical List

14-14

TolConSQP Termination tolerance on inner iteration SQP
constraint violation, a positive scalar. The default is
1e-6.

TolFun Termination tolerance on the function value,
a positive scalar. The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-61.

TolX Termination tolerance on x, a positive scalar.
The default is 1e-6. See “Tolerances and Stopping
Criteria” on page 2-61.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value is
ones(numberofvariables,1). fgoalattain
uses TypicalX for scaling finite differences for
gradient estimation.

UseParallel When true, estimate gradients in parallel. Disable
by setting to the default, false. See “Parallel
Computing”.

Examples

Consider a linear system of differential equations.

An output feedback controller, K, is designed producing a closed loop system

&x A BKC x Bu

y Cx

= + +

=

() ,

.

The eigenvalues of the closed loop system are determined from the matrices A, B, C, and
K using the command eig(A+B*K*C). Closed loop eigenvalues must lie on the real axis
in the complex plane to the left of the points [-5,-3,-1]. In order not to saturate the
inputs, no element in K can be greater than 4 or be less than -4.

The system is a two-input, two-output, open loop, unstable system, with state-space
matrices.

 fgoalattain

14-15

A B C=

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

0 5 0 0

0 2 10

0 1 2

1 0

2 2

0 1

1 0
.

00

0 0 1

È

Î
Í

˘

˚
˙.

The set of goal values for the closed loop eigenvalues is initialized as

goal = [-5,-3,-1];

To ensure the same percentage of under- or overattainment in the active objectives at the
solution, the weighting matrix, weight, is set to abs(goal).

Starting with a controller, K = [-1,-1; -1,-1], first write a function file, eigfun.m.

function F = eigfun(K,A,B,C)

F = sort(eig(A+B*K*C)); % Evaluate objectives

Next, enter system matrices and invoke an optimization routine.
A = [-0.5 0 0; 0 -2 10; 0 1 -2];

B = [1 0; -2 2; 0 1];

C = [1 0 0; 0 0 1];

K0 = [-1 -1; -1 -1]; % Initialize controller matrix

goal = [-5 -3 -1]; % Set goal values for the eigenvalues

weight = abs(goal); % Set weight for same percentage

lb = -4*ones(size(K0)); % Set lower bounds on the controller

ub = 4*ones(size(K0)); % Set upper bounds on the controller

options = optimoptions('fgoalattain','Display','iter'); % Set display parameter

[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C),...

 K0,goal,weight,[],[],[],[],lb,ub,[],options)

You can run this example by using the script goaldemo. (From the MATLAB Help
browser or the MathWorks Web site documentation, you can click the goaldemo name to
display the example.) After about 11 iterations, a solution is

Active inequalities (to within options.TolCon = 1e-006):

 lower upper ineqlin ineqnonlin

 1 1

 2 2

 4

K =

 -4.0000 -0.2564

 -4.0000 -4.0000

fval =

14 Functions — Alphabetical List

14-16

 -6.9313

 -4.1588

 -1.4099

attainfactor =

 -0.3863

Discussion

The attainment factor indicates that each of the objectives has been overachieved
by at least 38.63% over the original design goals. The active constraints, in this case
constraints 1 and 2, are the objectives that are barriers to further improvement and
for which the percentage of overattainment is met exactly. Three of the lower bound
constraints are also active.

In the preceding design, the optimizer tries to make the objectives less than the goals.
For a worst-case problem where the objectives must be as near to the goals as possible,
use optimoptions to set the GoalsExactAchieve option to the number of objectives
for which this is required.

Consider the preceding problem when you want all the eigenvalues to be equal to the
goal values. A solution to this problem is found by invoking fgoalattain with the
GoalsExactAchieve option set to 3.
options = optimoptions('fgoalattain','GoalsExactAchieve',3);

[K,fval,attainfactor] = fgoalattain(...

 @(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],...

options);

After about seven iterations, a solution is

K,fval,attainfactor

K =

 -1.5954 1.2040

 -0.4201 -2.9046

fval =

 -5.0000

 -3.0000

 -1.0000

attainfactor =

 1.1304e-022

 fgoalattain

14-17

In this case the optimizer has tried to match the objectives to the goals. The attainment
factor (of 1.1304e-22 or so, depending on your system) indicates that the goals have
been matched almost exactly.

Notes

This problem has discontinuities when the eigenvalues become complex; this explains
why the convergence is slow. Although the underlying methods assume the functions
are continuous, the method is able to make steps toward the solution because the
discontinuities do not occur at the solution point. When the objectives and goals are
complex, fgoalattain tries to achieve the goals in a least-squares sense.

Limitations

The objectives must be continuous. fgoalattain might give only local solutions.

More About

Algorithms

Multiobjective optimization concerns the minimization of a set of objectives
simultaneously. One formulation for this problem, and implemented in fgoalattain,
is the goal attainment problem of Gembicki [3]. This entails the construction of a set
of goal values for the objective functions. Multiobjective optimization is discussed in
“Multiobjective Optimization Algorithms” on page 7-2.

In this implementation, the slack variable γ is used as a dummy argument to minimize
the vector of objectives F(x) simultaneously; goal is a set of values that the objectives
attain. Generally, prior to the optimization, it is not known whether the objectives will
reach the goals (under attainment) or be minimized less than the goals (overattainment).
A weighting vector, weight, controls the relative underattainment or overattainment of
the objectives.

fgoalattain uses a sequential quadratic programming (SQP) method, which is
described in “Sequential Quadratic Programming (SQP)” on page 6-28. Modifications are
made to the line search and Hessian. In the line search an exact merit function (see [1]
and [4]) is used together with the merit function proposed by [5] and [6]. The line search

14 Functions — Alphabetical List

14-18

is terminated when either merit function shows improvement. A modified Hessian, which
takes advantage of the special structure of the problem, is also used (see [1] and [4]). A
full description of the modifications used is found in “Goal Attainment Method” on page
7-3 in “Introduction to Algorithms.” Setting the MeritFunction option to 'singleobj'
with

options = optimoptions(options,'MeritFunction','singleobj')

uses the merit function and Hessian used in fmincon.

See also “SQP Implementation” on page 6-29 for more details on the algorithm used and
the types of procedures displayed under the Procedures heading when the Display
option is set to 'iter'.
• “Create Function Handle”
• “Multiobjective Optimization”

References

[1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New Algorithm for
Statistical Circuit Design Based on Quasi-Newton Methods and Function
Splitting,” IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 784-794,
Sept. 1979.

[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System Design Using a
Multi-Objective Optimisation Approach, Control 1985 Conference, Cambridge,
UK, pp. 174-179.

[3] Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter
Sensitivity Indices,” Ph.D. Dissertation, Case Western Reserve Univ., Cleveland,
OH, 1974.

[4] Grace, A.C.W., “Computer-Aided Control System Design Using Optimization
Techniques,” Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.

[5] Han, S.P., “A Globally Convergent Method For Nonlinear Programming,” Journal of
Optimization Theory and Applications, Vol. 22, p. 297, 1977.

[6] Powell, M.J.D., “A Fast Algorithm for Nonlinear Constrained Optimization
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in
Mathematics, Vol. 630, Springer Verlag, 1978.

 fgoalattain

14-19

See Also
fmincon | fminimax | optimoptions | optimtool

14 Functions — Alphabetical List

14-20

fminbnd
Find minimum of single-variable function on fixed interval

Equation

Finds a minimum for a problem specified by

min () .
x

f x x x x such that 1 2< <

x, x1, and x2 are scalars and f(x) is a function that returns a scalar.

Syntax

x = fminbnd(fun,x1,x2)

x = fminbnd(fun,x1,x2,options)

x = fminbnd(problem)

[x,fval] = fminbnd(...)

[x,fval,exitflag] = fminbnd(...)

[x,fval,exitflag,output] = fminbnd(...)

Description

fminbnd attempts to find a minimum of a function of one variable within a fixed
interval.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective function, if necessary.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the scalar
valued function that is described in fun in the interval x1 < x < x2. fun is either a
function handle to a file or is an anonymous function.

 fminbnd

14-21

x = fminbnd(fun,x1,x2,options) minimizes with the optimization options specified
in the structure options. Use optimset to set these options.

x = fminbnd(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-21.

Create the structure problem by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

[x,fval] = fminbnd(...) returns the value of the objective function computed in
fun at the solution x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes the
exit condition of fminbnd.

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that
contains information about the optimization.

Input Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments passed
into fminbnd. This section provides function-specific details for fun, options, and
problem:

fun The function to be minimized. fun is a function handle for a function
that accepts a scalar x and returns a scalar f, the objective function
evaluated at x. The function fun can be specified as a function handle
for a file:

x = fminbnd(@myfun,x1,x2)

where myfun is a MATLAB function such as

function f = myfun(x)

f = ... % Compute function value at x.

fun can also be a function handle for an anonymous function.

x = fminbnd(@(x)sin(x^2),x1,x2);

options “Options” on page 14-22 provides the function-specific details for the
options values.

14 Functions — Alphabetical List

14-22

objective Objective function
x1 Left endpoint
x2 Right endpoint
solver 'fminbnd'

problem

options Options structure created using optimset

Output Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments returned
by fminbnd. This section provides function-specific details for exitflag and output:

Integer identifying the reason the algorithm terminated. The following
lists the values of exitflag and the corresponding reasons the
algorithm terminated.
1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIter

or number of function evaluations exceeded
options.MaxFunEvals.

-1 Stopped by an output function or plot function.

exitflag

-2 The bounds are inconsistent, meaning x1 > x2.
Structure containing information about the optimization. The fields of
the structure are
iterations Number of iterations taken
funcCount Number of function evaluations
algorithm 'golden section search, parabolic

interpolation'

output

message Exit message

Options

Optimization options used by fminbnd. You can use optimset to set or change the
values of these fields in the options structure options. See “Optimization Options
Reference” on page 13-7 for detailed information.

 fminbnd

14-23

Display Level of display. 'off' or 'none' displays no output; 'iter'
displays output at each iteration; 'final' displays just the
final output; 'notify' (default) displays output only if the
function does not converge. For iterative display details, see
“Iterative Display” on page 3-16.

FunValCheck Check whether objective function values are valid. 'on'
displays an error when the objective function returns a value
that is complex or NaN. The default 'off' displays no error.

MaxFunEvals Maximum number of function evaluations allowed, a positive
integer. The default is 500. See “Tolerances and Stopping
Criteria” on page 2-61 and “Iterations and Function Counts” on
page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer. The
default is 500. See “Tolerances and Stopping Criteria” on page
2-61 and “Iterations and Function Counts” on page 3-10.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration, either as a function handle or
as a cell array of function handles. The default is none ([]). See
“Output Function” on page 13-20.

PlotFcns Plots various measures of progress while the algorithm
executes, select from predefined plots or write your own. Pass a
function handle or a cell array of function handles. The default
is none ([]).

• @optimplotx plots the current point
• @optimplotfunccount plots the function count
• @optimplotfval plots the function value

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolX Termination tolerance on x, a positive scalar. The default is
1e-4. See “Tolerances and Stopping Criteria” on page 2-61.

Examples

A minimum of sin(x) occurs at

14 Functions — Alphabetical List

14-24

x = fminbnd(@sin,0,2*pi)

x =

 4.7124

The value of the function at the minimum is

y = sin(x)

y =

 -1.0000

To find the minimum of the function
f(x) = (x – 3)2 – 1,

on the interval (0,5), first write a function file.

function f = myfun(x)

f = (x-3)^2 - 1;

Next, call an optimization routine.

x = fminbnd(@myfun,0,5)

This generates the solution

x =

 3

The value at the minimum is

y = myfun(x)

y =

 -1

If fun is parameterized, you can use anonymous functions to capture the problem-
dependent parameters. For example, suppose you want to minimize the objective
function myfun defined by the following function file:

function f = myfun(x,a)

f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly to fminbnd. To
optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

a = 1.5; % define parameter first

 fminbnd

14-25

2 Call fminbnd with a one-argument anonymous function that captures that value of
a and calls myfun with two arguments:

x = fminbnd(@(x) myfun(x,a),0,1)

x =

 0.9999

Limitations
The function to be minimized must be continuous. fminbnd might only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of the
interval. In such a case, fmincon often gives faster and more accurate solutions.

fminbnd only handles real variables.

More About
Algorithms

fminbnd is a function file. The algorithm is based on golden section search and parabolic
interpolation. Unless the left endpoint x1 is very close to the right endpoint x2, fminbnd
never evaluates fun at the endpoints, so fun need only be defined for x in the interval x1
< x < x2.

If the minimum actually occurs at x1 or x2, fminbnd returns a point x in the interior of
the interval (x1,x2) that is close to the minimizer. In this case, the distance of x from the
minimizer is no more than 2*(TolX + 3*abs(x)*sqrt(eps)). See [1] or [2] for details
about the algorithm.
• “Create Function Handle”
• “Anonymous Functions”

References

[1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical
Computations, Prentice Hall, 1976.

14 Functions — Alphabetical List

14-26

[2] Brent, Richard. P., Algorithms for Minimization without Derivatives, Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.

See Also
fminsearch | fmincon | fminunc | optimset | optimtool

 fmincon

14-27

fmincon
Find minimum of constrained nonlinear multivariable function

Nonlinear programming solver.

Finds the minimum of a problem specified by

min ()

()

()

,

x
f x

c x

ceq x

A x b

Aeq x beq

lb x ub

 such that

£

=

◊ £

◊ =

£ £

Ï

Ì

Ô
0

0ÔÔÔ

Ó

Ô
Ô
Ô

b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return
vectors, and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear
functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-30.

Syntax

x = fmincon(fun,x0,A,b)

x = fmincon(fun,x0,A,b,Aeq,beq)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

x = fmincon(problem)

[x,fval] = fmincon(___)

[x,fval,exitflag,output] = fmincon(___)

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(___)

Description

x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a minimizer x of the
function described in fun subject to the linear inequalities A*x ≤ b. x0 can be a scalar,
vector, or matrix.

14 Functions — Alphabetical List

14-28

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective function and nonlinear constraint functions, if necessary.

x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear equalities
Aeq*x = beq and A*x ≤ b. If no inequalities exist, set A = [] and b = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds
on the design variables in x, so that the solution is always in the range lb ≤ x ≤ ub. If
no equalities exist, set Aeq = [] and beq = []. If x(i) is unbounded below, set lb(i)
= -Inf, and if x(i) is unbounded above, set ub(i) = Inf.

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the output fval is [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the interior of the
box defined by the bounds. Components that respect the bounds are not changed. See
“Iterations Can Violate Constraints” on page 2-32.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization
to the nonlinear inequalities c(x) or equalities ceq(x) defined in nonlcon. fmincon
optimizes such that c(x) ≤ 0 and ceq(x) = 0. If no bounds exist, set lb = [] and/or
ub = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes with the
optimization options specified in options. Use optimoptions to set these options. If
there are no nonlinear inequality or equality constraints, set nonlcon = [].

x = fmincon(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-43. Create the problem
structure by exporting a problem from Optimization app, as described in “Exporting Your
Work” on page 5-11.

[x,fval] = fmincon(___), for any syntax, returns the value of the objective function
fun at the solution x.

[x,fval,exitflag,output] = fmincon(___) additionally returns a value
exitflag that describes the exit condition of fmincon, and a structure output with
information about the optimization process.

 fmincon

14-29

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(___)

additionally returns:

• lambda — Structure with fields containing the Lagrange multipliers at the solution
x.

• grad — Gradient of fun at the solution x.
• hessian — Hessian of fun at the solution x. See “fmincon Hessian” on page 3-27.

Examples

Linear Inequality Constraint

Find the minimum value of Rosenbrock's function when there is a linear inequality
constraint.

Set the objective function fun to be Rosenbrock's function. Rosenbrock's function is well-
known to be difficult to minimize. It has its minimum objective value of 0 at the point
(1,1). For more information, see “Solve a Constrained Nonlinear Problem”.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Find the minimum value starting from the point [-1,2], constrained to have
. Express this constraint in the form Ax <= b by taking A = [1,2]

and b = 1. Notice that this constraint means that the solution will not be at the
unconstrained solution (1,1), because at that point .

x0 = [-1,2];

A = [1,2];

b = 1;

x = fmincon(fun,x0,A,b)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

14 Functions — Alphabetical List

14-30

x =

 0.5022 0.2489

Linear Inequality and Equality Constraint

Find the minimum value of Rosenbrock's function when there are both a linear
inequality constraint and a linear equality constraint.

Set the objective function fun to be Rosenbrock's function.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Find the minimum value starting from the point [0.5,0], constrained to have
 and .

• Express the linear inequality constraint in the form A*x <= b by taking A = [1,2]
and b = 1.

• Express the linear equality constraint in the form Aeq*x <= beq by taking Aeq =
[2,1] and beq = 1.

x0 = [0.5,0];

A = [1,2];

b = 1;

Aeq = [2,1];

beq = 1;

x = fmincon(fun,x0,A,b,Aeq,beq)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

 fmincon

14-31

 0.4149 0.1701

Bound Constraints

Find the minimum of an objective function in the presence of bound constraints.

The objective function is a simple algebraic function of two variables.

fun = @(x)1+x(1)/(1+x(2)) - 3*x(1)*x(2) + x(2)*(1+x(1));

Look in the region where x has positive values, x(1) ≤ 1, and x(2) ≤ 2.

lb = [0,0];

ub = [1,2];

There are no linear constraints, so set those arguments to [].

A = [];

b = [];

Aeq = [];

beq = [];

Try an initial point in the middle of the region. Find the minimum of fun, subject to the
bound constraints.

x0 = [0.5,1];

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

x =

 1.0000 2.0000

A different initial point can lead to a different solution.

14 Functions — Alphabetical List

14-32

x0 = x0/5;

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

x =

 1.0e-06 *

 0.4000 0.4000

To see which solution is better, see “Obtain the Objective Function Value” on page
14-38.

Nonlinear Constraints

Find the minimum of a function subject to nonlinear constraints

Find the point where Rosenbrock's function is minimized within a circle, also subject to
bound constraints.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Look within the region , .

lb = [0,0.2];

ub = [0.5,0.8];

Also look within the circle centered at [1/3,1/3] with radius 1/3. Copy the following code to
a file on your MATLAB® path named circlecon.m.

% Copyright 2015 The MathWorks, Inc.

function [c,ceq] = circlecon(x)

 fmincon

14-33

c = (x(1)-1/3)^2 + (x(2)-1/3)^2 - (1/3)^2;

ceq = [];

There are no linear constraints, so set those arguments to [].

A = [];

b = [];

Aeq = [];

beq = [];

Choose an initial point satisfying all the constraints.

x0 = [1/4,1/4];

Solve the problem.

nonlcon = @circlecon;

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

 0.5000 0.2500

Nondefault Options

Set options to view iterations as they occur and to use a different algorithm.

To observe the fmincon solution process, set the Display option to 'iter'. Also,
try the 'sqp' algorithm, which is sometimes faster or more accurate than the default
'interior-point' algorithm.

options = optimoptions('fmincon','Display','iter','Algorithm','sqp');

14 Functions — Alphabetical List

14-34

Find the minimum of Rosenbrock's function on the unit disk, . First create a
function that represents the nonlinear constraint. Save this as a file named unitdisk.m
on your MATLAB® path.

% Copyright 2015 The MathWorks, Inc.

function [c,ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

Create the remaining problem specifications. Then run fmincon.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

A = [];

b = [];

Aeq = [];

beq = [];

lb = [];

ub = [];

nonlcon = @unitdisk;

x0 = [0,0];

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 Norm of First-order

 Iter F-count f(x) Feasibility Steplength step optimality

 0 3 1.000000e+00 0.000e+00 2.000e+00

 1 12 8.913011e-01 0.000e+00 1.176e-01 2.353e-01 1.107e+01

 2 22 8.047847e-01 0.000e+00 8.235e-02 1.900e-01 1.330e+01

 3 28 4.197517e-01 0.000e+00 3.430e-01 1.217e-01 6.153e+00

 4 31 2.733703e-01 0.000e+00 1.000e+00 5.254e-02 4.587e-01

 5 34 2.397111e-01 0.000e+00 1.000e+00 7.498e-02 3.029e+00

 6 37 2.036002e-01 0.000e+00 1.000e+00 5.960e-02 3.019e+00

 7 40 1.164353e-01 0.000e+00 1.000e+00 1.459e-01 1.058e+00

 8 43 1.161753e-01 0.000e+00 1.000e+00 1.754e-01 7.383e+00

 9 46 5.901601e-02 0.000e+00 1.000e+00 1.547e-02 7.278e-01

 10 49 4.533081e-02 2.898e-03 1.000e+00 5.393e-02 1.252e-01

 11 52 4.567454e-02 2.225e-06 1.000e+00 1.492e-03 1.679e-03

 12 55 4.567481e-02 4.406e-12 1.000e+00 2.095e-06 1.501e-05

 13 58 4.567481e-02 0.000e+00 1.000e+00 2.160e-09 1.511e-05

Local minimum possible. Constraints satisfied.

 fmincon

14-35

fmincon stopped because the size of the current step is less than

the default value of the step size tolerance and constraints are

satisfied to within the default value of the constraint tolerance.

x =

 0.7864 0.6177

Include Gradient

Include gradient evaluation in the objective function for faster or more reliable
computations.

Include the gradient evaluation as a conditionalized output in the objective function file.
For details, see “Including Derivatives”. The objective function is Rosenbrock's function,

which has gradient

% Copyright 2015 The MathWorks, Inc.

function [f,g] = rosenbrockwithgrad(x)

% Calculate objective f

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required

 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

end

14 Functions — Alphabetical List

14-36

Save this code as a file named rosenbrockwithgrad.m on your MATLAB® path.

Create options to use the objective function gradient.

options = optimoptions('fmincon','GradObj','on');

Create the other inputs for the problem. Then call fmincon.

fun = @rosenbrockwithgrad;

x0 = [-1,2];

A = [];

b = [];

Aeq = [];

beq = [];

lb = [-2,-2];

ub = [2,2];

nonlcon = [];

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

 1.0000 1.0000

Use a Problem Structure

Solve the same problem as in “Nondefault Options” on page 14-33 using a problem
structure instead of separate arguments.

Create the options and a problem structure. See problem for the field names and required
fields.

options = optimoptions('fmincon','Display','iter','Algorithm','sqp');

 fmincon

14-37

problem.options = options;

problem.solver = 'fmincon';

problem.objective = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

problem.x0 = [0,0];

Create a function file for the nonlinear constraint function representing norm(x)2 ≤ 1.

function [c,ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

Save this as a file named unitdisk.m on your MATLAB path.

Include the nonlinear constraint function in problem.

problem.nonlcon = @unitdisk;

Solve the problem.

x = fmincon(problem)

 Norm of First-order

 Iter F-count f(x) Feasibility Steplength step optimality

 0 3 1.000000e+00 0.000e+00 2.000e+00

 1 12 8.913011e-01 0.000e+00 1.176e-01 2.353e-01 1.107e+01

 2 22 8.047847e-01 0.000e+00 8.235e-02 1.900e-01 1.330e+01

 3 28 4.197517e-01 0.000e+00 3.430e-01 1.217e-01 6.153e+00

 4 31 2.733703e-01 0.000e+00 1.000e+00 5.254e-02 4.587e-01

 5 34 2.397111e-01 0.000e+00 1.000e+00 7.498e-02 3.029e+00

 6 37 2.036002e-01 0.000e+00 1.000e+00 5.960e-02 3.019e+00

 7 40 1.164353e-01 0.000e+00 1.000e+00 1.459e-01 1.058e+00

 8 43 1.161753e-01 0.000e+00 1.000e+00 1.754e-01 7.383e+00

 9 46 5.901601e-02 0.000e+00 1.000e+00 1.547e-02 7.278e-01

 10 49 4.533081e-02 2.898e-03 1.000e+00 5.393e-02 1.252e-01

 11 52 4.567454e-02 2.225e-06 1.000e+00 1.492e-03 1.679e-03

 12 55 4.567481e-02 4.406e-12 1.000e+00 2.095e-06 1.501e-05

 13 58 4.567481e-02 0.000e+00 1.000e+00 2.160e-09 1.511e-05

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

the default value of the step size tolerance and constraints are

satisfied to within the default value of the constraint tolerance.

14 Functions — Alphabetical List

14-38

<stopping criteria details>

x =

 0.7864 0.6177

The iterative display and solution are the same as in “Nondefault Options” on page
14-33.

Obtain the Objective Function Value

Call fmincon with the fval output to obtain the value of the objective function at the
solution.

The “Bound Constraints” on page 14-31 example shows two solutions. Which is
better? Run the example requesting the fval output as well as the solution.

fun = @(x)1+x(1)./(1+x(2)) - 3*x(1).*x(2) + x(2).*(1+x(1));

lb = [0,0];

ub = [1,2];

A = [];

b = [];

Aeq = [];

beq = [];

x0 = [0.5,1];

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

x =

 1.0000 2.0000

fval =

 fmincon

14-39

 -0.6667

Run the problem using a different starting point x0.

x0 = x0/5;

[x2,fval2] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

x2 =

 1.0e-06 *

 0.4000 0.4000

fval2 =

 1.0000

This solution has an objective function value fval2 = 1, which is higher than the
first value fval = -0.6667. The first solution x has a lower local minimum objective
function value.

Examine Solution Using Extra Outputs

To easily examine the quality of a solution, request the exitflag and output outputs.

Set up the problem of minimizing Rosenbrock's function on the unit disk, . First
create a function that represents the nonlinear constraint. Save this as a file named
unitdisk.m on your MATLAB® path.

% Copyright 2015 The MathWorks, Inc.

14 Functions — Alphabetical List

14-40

function [c,ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

Create the remaining problem specifications.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

nonlcon = @unitdisk;

A = [];

b = [];

Aeq = [];

beq = [];

lb = [];

ub = [];

x0 = [0,0];

Call fmincon using the fval, exitflag, and output outputs.

[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

 0.7864 0.6177

fval =

 0.0457

exitflag =

 1

 fmincon

14-41

output =

 iterations: 24

 funcCount: 84

 constrviolation: 0

 stepsize: 6.9160e-06

 algorithm: 'interior-point'

 firstorderopt: 2.0624e-08

 cgiterations: 4

 message: 'Local minimum found that satisfies the constraints....'

• The exitflag value 1 indicates that the solution is a local minimum.
• The output structure reports several statistics about the solution process.

In particular, it gives the number of iterations in output.iterations,
number of function evaluations in output.funcCount, and the feasibility in
output.constrviolation.

Obtain All Outputs

fmincon optionally returns several outputs that you can use for analyzing the reported
solution.

Set up the problem of minimizing Rosenbrock’s function on the unit disk. First create a
function that represents the nonlinear constraint. Save this as a file named unitdisk.m
on your MATLAB path.

function [c,ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

Create the remaining problem specifications.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

nonlcon = @unitdisk;

A = [];

b = [];

Aeq = [];

beq = [];

lb = [];

ub = [];

x0 = [0,0];

14 Functions — Alphabetical List

14-42

Request all fmincon outputs.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

x =

 0.7864 0.6177

fval =

 0.0457

exitflag =

 1

output =

 iterations: 24

 funcCount: 84

 constrviolation: 0

 stepsize: 6.9160e-06

 algorithm: 'interior-point'

 firstorderopt: 2.0624e-08

 cgiterations: 4

 message: 'Local minimum found that satisfies the constraints.

Optimizati...'

lambda =

 eqlin: [0x1 double]

 fmincon

14-43

 eqnonlin: [0x1 double]

 ineqlin: [0x1 double]

 lower: [2x1 double]

 upper: [2x1 double]

 ineqnonlin: 0.1215

grad =

 -0.1911

 -0.1501

hessian =

 497.2871 -314.5574

 -314.5574 200.2378

• The lambda.ineqnonlin output shows that the nonlinear constraint is active at the
solution, and gives the value of the associated Lagrange multiplier.

• The grad output gives the value of the gradient of the objective function at the
solution x.

• The hessian output is described in “fmincon Hessian” on page 3-27.

• “Constrained Optimization”

Input Arguments

fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function
that accepts a vector or array x and returns a real scalar f, the objective function
evaluated at x.

Specify fun as a function handle for a file:

x = fmincon(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)

14 Functions — Alphabetical List

14-44

f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fmincon(@(x)norm(x)^2,x0,A,b);

If you can compute the gradient of fun and the GradObj option is set to 'on', as set by

options = optimoptions('fmincon','GradObj','on')

then fun must return the gradient vector g(x) in the second output argument.

If you can also compute the Hessian matrix and the Hessian option is set to 'on' via
options = optimoptions('fmincon','Hessian','user-supplied') and the
Algorithm option is trust-region-reflective, fun must return the Hessian value
H(x), a symmetric matrix, in a third output argument. fun can give a sparse Hessian.
See “Writing Objective Functions” on page 2-17 for details.

If you can also compute the Hessian matrix and the Algorithm option is set to
'interior-point', there are several ways to pass the Hessian to fmincon. For more
information, see “Hessian” on page 14-60. For an example using Symbolic Math
Toolbox to compute the gradient and Hessian, see “Symbolic Math Toolbox Calculates
Gradients and Hessians” on page 6-80.

The interior-point and trust-region-reflective algorithms allow you to supply
a Hessian multiply function. This function gives the result of a Hessian-times-vector
product without computing the Hessian directly. This can save memory. See “Hessian
Multiply Function” on page 14-62.
Example: fun = @(x)sin(x(1))*cos(x(2))

Data Types: char | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements
in, and size of, x0 to determine the number and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

A — Linear inequality constraints
real matrix

 fmincon

14-45

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is
the number of inequalities, and N is the number of variables (number of elements in x0).
For large problems, pass A as a sparse matrix.

A encodes the M linear inequalities
A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M
elements.

For example, to specify
x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];

b = [10;20;30];

Example: To specify that the x-components add up to 1 or less, take A = ones(1,N) and
b = 1

Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related
to the A matrix. If you pass b as a row vector, solvers internally convert b to the column
vector b(:). For large problems, pass b as a sparse vector.

b encodes the M linear inequalities
A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, to specify
x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

14 Functions — Alphabetical List

14-46

A = [1,2;3,4;5,6];

b = [10;20;30];

Example: To specify that the x-components sum to 1 or less, take A = ones(1,N) and b
= 1

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where
Me is the number of equalities, and N is the number of variables (number of elements in
x0). For large problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities
Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me
elements.

For example, to specify
x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];

beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq =
1

Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector
related to the Aeq matrix. If you pass beq as a row vector, solvers internally convert beq
to the column vector beq(:). For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities
Aeq*x = beq,

 fmincon

14-47

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, to specify
x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];

beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq =
1

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of lb, then lb specifies that
x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that
x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all x-components are positive, lb = zeros(size(x0))

Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of ub, then ub specifies that
x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that
x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.

14 Functions — Alphabetical List

14-48

Example: To specify that all x-components are less than one, ub = ones(size(x0))

Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a
function that accepts a vector or array x and returns two arrays, c(x) and ceq(x).

• c(x) is the array of nonlinear inequality constraints at x. fmincon attempts to
satisfy
c(x) <= 0 for all entries of c.

• ceq(x) is the array of nonlinear equality constraints at x. fmincon attempts to
satisfy
ceq(x) = 0 for all entries of ceq.

For example,

x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)

c = ... % Compute nonlinear inequalities at x.

ceq = ... % Compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the GradConstr option is
'on', as set by

options = optimoptions('fmincon','GradConstr','on')

then nonlcon must also return, in the third and fourth output arguments, GC, the
gradient of c(x), and GCeq, the gradient of ceq(x). GC and GCeq can be sparse or
dense. If GC or GCeq is large, with relatively few nonzero entries, save running time and
memory in the interior-point algorithm by representing them as sparse matrices.
For more information, see “Nonlinear Constraints” on page 2-35.
Data Types: char | function_handle

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as
optimset returns.

 fmincon

14-49

Some options apply to all algorithms, and others are relevant for particular algorithms.
See “Optimization Options Reference” on page 13-7 for detailed information.

All Algorithms
Algorithm Choose the optimization algorithm:

• 'interior-point' (default)
• 'trust-region-reflective'

• 'sqp'

• 'active-set'

For information on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

The trust-region-reflective algorithm requires:

• A gradient to be supplied in the objective function
• GradObj to be set to 'on'
• Either bound constraints or linear equality constraints, but

not both

If you select the 'trust-region-reflective' algorithm
and these conditions are not all satisfied, fmincon throws an
error.

The 'active-set' and 'sqp' algorithms are not large-scale.
See “Large-Scale vs. Medium-Scale Algorithms” on page 2-12.

DerivativeCheck Compare user-supplied derivatives (gradients of objective
or constraints) to finite-differencing derivatives. Choices are
'off' (default) or 'on'.

Diagnostics Display diagnostic information about the function to be
minimized or solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a
positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a
positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-16):

14 Functions — Alphabetical List

14-50

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the

default exit message.
• 'iter-detailed' displays output at each iteration, and

gives the technical exit message.
• 'notify' displays output only if the function does not

converge, and gives the default exit message.
• 'notify-detailed' displays output only if the function

does not converge, and gives the technical exit message.
• 'final' (default) displays only the final output, and gives

the default exit message.
• 'final-detailed' displays only the final output, and

gives the technical exit message.
FinDiffRelStep Scalar or vector step size factor for finite differences. When

you set FinDiffRelStep to a vector v, forward finite
differences steps delta are
delta = v.*sign′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) = 1. Central
finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The default is
sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

FinDiffType Finite differences, used to estimate gradients, are either
'forward' (default), or 'central' (centered). 'central'
takes twice as many function evaluations but should be
more accurate. The trust-region-reflective algorithm uses
FinDiffType only when DerivativeCheck is set to 'on'.

fmincon is careful to obey bounds when estimating both types
of finite differences. So, for example, it could take a backward,
rather than a forward, difference to avoid evaluating at a
point outside bounds. However, for the interior-point
algorithm, 'central' differences might violate bounds
during their evaluation if the AlwaysHonorConstraints
option is set to 'none'.

 fmincon

14-51

FunValCheck Check whether objective function values are valid. The default
setting, 'off', does not perform a check. The 'on' setting
displays an error when the objective function returns a value
that is complex, Inf, or NaN.

GradConstr Gradient for nonlinear constraint functions defined by the
user. When set to the default, 'off', fmincon estimates
gradients of the nonlinear constraints by finite differences.
When set to 'on', fmincon expects the constraint function
to have four outputs, as described in nonlcon. The trust-
region-reflective algorithm does not accept nonlinear
constraints.

GradObj Gradient for the objective function defined by the user. See
the description of fun to see how to define the gradient in fun.
The default, 'off', causes fmincon to estimate gradients
using finite differences. Set to 'on' to have fmincon use
a user-defined gradient of the objective function. You must
provide the gradient, and set GradObj to 'on', to use the
trust-region-reflective method.

MaxFunEvals Maximum number of function evaluations allowed, a
positive integer. The default value for all algorithms
except interior-point is 100*numberOfVariables;
for the interior-point algorithm the default is 3000.
See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer.
The default value for all algorithms except interior-point
is 400; for the interior-point algorithm the default is
1000. See “Tolerances and Stopping Criteria” on page 2-61
and “Iterations and Function Counts” on page 3-10.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Function” on page 13-20.

14 Functions — Alphabetical List

14-52

PlotFcns Plot various measures of progress while the algorithm
executes, select from predefined plots or write your own. Pass
a function handle or a cell array of function handles. The
default is none ([]).

• @optimplotx plots the current point
• @optimplotfunccount plots the function count
• @optimplotfval plots the function value
• @optimplotconstrviolation plots the maximum

constraint violation
• @optimplotstepsize plots the step size
• @optimplotfirstorderopt plots the first-order

optimality measure

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolCon Tolerance on the constraint violation, a positive scalar. The
default is 1e-6. See “Tolerances and Stopping Criteria” on
page 2-61.

TolFun Termination tolerance on the function value, a positive scalar.
The default is 1e-6. See “Tolerances and Stopping Criteria”
on page 2-61.

TolX Termination tolerance on x, a positive scalar. The default
value for all algorithms except 'interior-point' is 1e-6;
for the 'interior-point' algorithm, the default is 1e-10.
See “Tolerances and Stopping Criteria” on page 2-61.

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point. The
default value is ones(numberofvariables,1). fmincon
uses TypicalX for scaling finite differences for gradient
estimation.

The 'trust-region-reflective' algorithm uses
TypicalX only for the DerivativeCheck option.

 fmincon

14-53

UseParallel When true, fmincon estimates gradients in parallel.
Disable by setting to the default, false. trust-region-
reflective requires a gradient in the objective, so
UseParallel does not apply. See “Parallel Computing”.

Trust-Region-Reflective Algorithm
Hessian If 'off' (default), fmincon approximates the Hessian

using finite differences. If 'on' or 'user-supplied',
fmincon uses a user-defined Hessian (defined in fun), or
Hessian information (when using HessMult), for the objective
function. See “Hessian” on page 14-60.

HessMult Function handle for Hessian multiply function. For large-
scale structured problems, this function computes the Hessian
matrix product H*Y without actually forming H. The function
is of the form

W = hmfun(Hinfo,Y)

where Hinfo contains a matrix used to compute H*Y.

The first argument is the same as the third argument
returned by the objective function fun, for example

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. The matrix W = H*Y, although H
is not formed explicitly. fmincon uses Hinfo to compute the
preconditioner. For information on how to supply values for
any additional parameters hmfun needs, see “Passing Extra
Parameters” on page 2-50.

Note Hessian must be set to 'on' or 'user-supplied' for
fmincon to pass Hinfo from fun to hmfun.

See “Hessian Multiply Function” on page 14-62. See
“Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-75 for an example.

14 Functions — Alphabetical List

14-54

HessPattern Sparsity pattern of the Hessian for finite differencing.
Set HessPattern(i,j) = 1 when you can have ∂2fun/
∂x(i)∂x(j) ≠ 0. Otherwise, set HessPattern(i,j) = 0.

Use HessPattern when it is inconvenient to compute the
Hessian matrix H in fun, but you can determine (say, by
inspection) when the ith component of the gradient of fun
depends on x(j). fmincon can approximate H via sparse
finite differences (of the gradient) if you provide the sparsity
structure of H as the value for HessPattern. In other words,
provide the locations of the nonzeros.

When the structure is unknown, do not set HessPattern.
The default behavior is as if HessPattern is a dense matrix
of ones. Then fmincon computes a full finite-difference
approximation in each iteration. This computation can be
very expensive for large problems, so it is usually better to
determine the sparsity structure.

MaxPCGIter Maximum number of preconditioned conjugate gradient
(PCG) iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more
information, see “Preconditioned Conjugate Gradient Method”
on page 6-23.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative
integer. By default, diagonal preconditioning is used
(upper bandwidth of 0). For some problems, increasing the
bandwidth reduces the number of PCG iterations. Setting
PrecondBandWidth to Inf uses a direct factorization
(Cholesky) rather than the conjugate gradients (CG). The
direct factorization is computationally more expensive than
CG, but produces a better quality step towards the solution.

TolPCG Termination tolerance on the PCG iteration, a positive scalar.
The default is 0.1.

Active-Set Algorithm
MaxSQPIter Maximum number of SQP iterations allowed, a positive

integer. The default is 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds).

 fmincon

14-55

RelLineSrchBnd Relative bound (a real nonnegative scalar value) on the line
search step length. The total displacement in x satisfies
|Δx(i)| ≤ relLineSrchBnd· max(|x(i)|,|typicalx(i)|).
This option provides control over the magnitude of the
displacements in x for cases in which the solver takes steps
that are considered too large. The default is no bounds ([]).

RelLineSrchBndDurationNumber of iterations for which the bound specified in
RelLineSrchBnd should be active (default is 1).

TolConSQP Termination tolerance on inner iteration SQP constraint
violation, a positive scalar. The default is 1e-6.

Interior-Point Algorithm
AlwaysHonorConstraintsThe default 'bounds' ensures that bound constraints are

satisfied at every iteration. Disable by setting to 'none'.
HessFcn Function handle to a user-supplied Hessian (see “Hessian” on

page 14-60). This is used when the Hessian option is set
to 'user-supplied'.

Hessian Chooses how fmincon calculates the Hessian (see “Hessian”
on page 14-60). The choices are:

• 'bfgs' (default)
• 'fin-diff-grads'

• 'lbfgs'

• {'lbfgs',Positive Integer}

• 'user-supplied'

HessMult Handle to a user-supplied function that gives a Hessian-
times-vector product (see “Hessian Multiply Function” on page
14-62). This is used when the Hessian option is set to
'user-supplied'.

InitBarrierParam Initial barrier value, a positive scalar. Sometimes it might
help to try a value above the default 0.1, especially if the
objective or constraint functions are large.

InitTrustRegionRadiusInitial radius of the trust region, a positive scalar. On badly
scaled problems it might help to choose a value smaller than
the default n , where n is the number of variables.

14 Functions — Alphabetical List

14-56

MaxProjCGIter A tolerance (stopping criterion) for the number of
projected conjugate gradient iterations; this is an
inner iteration, not the number of iterations of the
algorithm. This positive integer has a default value of
2*(numberOfVariables - numberOfEqualities).

ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the
objective function value goes below ObjectiveLimit and the
iterate is feasible, the iterations halt, because the problem is
presumably unbounded. The default value is -1e20.

ScaleProblem 'obj-and-constr' causes the algorithm to normalize all
constraints and the objective function. Disable by setting to
the default 'none'.

SubproblemAlgorithm Determines how the iteration step is calculated. The default,
'ldl-factorization', is usually faster than 'cg'
(conjugate gradient), though 'cg' might be faster for large
problems with dense Hessians.

TolProjCG A relative tolerance (stopping criterion) for projected conjugate
gradient algorithm; this is for an inner iteration, not the
algorithm iteration. This positive scalar has a default of 0.01.

TolProjCGAbs Absolute tolerance (stopping criterion) for projected conjugate
gradient algorithm; this is for an inner iteration, not the
algorithm iteration. This positive scalar has a default of
1e-10.

SQP Algorithm
ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the

objective function value goes below ObjectiveLimit and the
iterate is feasible, the iterations halt, because the problem is
presumably unbounded. The default value is -1e20.

ScaleProblem 'obj-and-constr' causes the algorithm to normalize all
constraints and the objective function. Disable by setting to
the default 'none'.

Example: options =
optimoptions('fmincon','GradObj','on','GradConstr','on')

problem — Problem structure
structure

 fmincon

14-57

Problem structure, specified as a structure with the following fields:

Field Name Entry

objective Objective function
x0 Initial point for x
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
nonlcon Nonlinear constraint function
solver 'fmincon'

options Options created with optimoptions

You must supply at least the objective, x0, solver, and options fields in the
problem structure.

The simplest way to obtain a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size
of x0. Typically, x is a local solution to the problem when exitflag is positive. For
information on the quality of the solution, see “When the Solver Succeeds” on page 4-22.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally,
fval = fun(x).

14 Functions — Alphabetical List

14-58

exitflag — Reason fmincon stopped
integer

Reason fmincon stopped, returned as an integer.

All Algorithms:
1 First-order optimality measure was less than

options.TolFun, and maximum constraint violation
was less than options.TolCon.

0 Number of iterations exceeded options.MaxIter
or number of function evaluations exceeded
options.MaxFunEvals.

-1 Stopped by an output function or plot function.
-2 No feasible point was found.
trust-region-reflective, interior-point, and sqp algorithms:
2 Change in x was less than options.TolX and

maximum constraint violation was less than
options.TolCon.

trust-region-reflective algorithm only:
3 Change in the objective function value was less than

options.TolFun and maximum constraint violation
was less than options.TolCon.

active-set algorithm only:
4 Magnitude of the search direction was less than

2*options.TolX and maximum constraint violation
was less than options.TolCon.

5 Magnitude of directional derivative in search direction
was less than 2*options.TolFun and maximum
constraint violation was less than options.TolCon.

interior-point and sqp algorithms:
-3 Objective function at current iteration went below

options.ObjectiveLimit and maximum constraint
violation was less than options.TolCon.

output — Information about the optimization process
structure

 fmincon

14-59

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of line search step relative to search direction

(active-set and sqp algorithms only)
constrviolation Maximum of constraint functions
stepsize Length of last displacement in x (not in active-set

algorithm)
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations (trust-region-

reflective and interior-point algorithms)
firstorderopt Measure of first-order optimality
message Exit message

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with fields:

lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq
ineqnonlin Nonlinear inequalities corresponding to the c in

nonlcon

eqnonlin Nonlinear equalities corresponding to the ceq in
nonlcon

grad — Gradient at the solution
real vector

Gradient at the solution, returned as a real vector. grad gives the gradient of fun at the
point x(:).

hessian — Approximate Hessian
real matrix

14 Functions — Alphabetical List

14-60

Approximate Hessian, returned as a real matrix. For the meaning of hessian, see
“Hessian” on page 3-26.

Limitations
• fmincon is a gradient-based method that is designed to work on problems where

the objective and constraint functions are both continuous and have continuous first
derivatives.

• For the 'trust-region-reflective' algorithm, you must provide the gradient in
fun.

• The 'trust-region-reflective' algorithm does not allow equal upper and lower
bounds. For example, if lb(2)==ub(2), fmincon gives this error:

Equal upper and lower bounds not permitted in trust-region-reflective algorithm. Use

either interior-point or SQP algorithms instead.

• There are two different syntaxes for passing a Hessian, and there are two different
syntaxes for passing a HessMult function; one for trust-region-reflective, and
another for interior-point. See “Hessian” on page 14-60.

• For trust-region-reflective, the Hessian of the Lagrangian is the same as
the Hessian of the objective function. You pass that Hessian as the third output of
the objective function.

• For interior-point, the Hessian of the Lagrangian involves the Lagrange
multipliers and the Hessians of the nonlinear constraint functions. You pass the
Hessian as a separate function that takes into account both the position x and the
Lagrange multiplier structure lambda.

• When the problem is infeasible, fmincon attempts to minimize the maximum
constraint value.

More About

Hessian

fmincon uses a Hessian as an optional input. This Hessian is the matrix of second
derivatives of the Lagrangian (see Equation 3-1), namely,

— — — —xx i i i iL x f x c x ceq x2 2 2 2(,) () () ().l l l= + +Â Â

 fmincon

14-61

The various fmincon algorithms handle input Hessians differently:

• The active-set and sqp algorithms do not accept a user-supplied Hessian. They
compute a quasi-Newton approximation to the Hessian of the Lagrangian.

• The trust-region-reflective algorithm can accept a user-supplied Hessian
as the final output of the objective function. Since this algorithm has only bounds
or linear constraints, the Hessian of the Lagrangian is same as the Hessian of the
objective function. See “Writing Scalar Objective Functions” on page 2-18 for details
on how to pass the Hessian to fmincon. Indicate that you are supplying a Hessian by

options = optimoptions('fmincon','Algorithm','trust-region-reflective','Hessian','user-supplied');

If you do not pass a Hessian, the algorithm computes a finite-difference
approximation.

• The interior-point algorithm can accept a user-supplied Hessian as a separately
defined function—it is not computed in the objective function. The syntax is

hessian = hessianfcn(x, lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number of variables.
If hessian is large and has relatively few nonzero entries, save running time and
memory by representing hessian as a sparse matrix. lambda is a structure with the
Lagrange multiplier vectors associated with the nonlinear constraints:

lambda.ineqnonlin

lambda.eqnonlin

fmincon computes the structure lambda. hessianfcn must calculate the sums in
Equation 14-1. Indicate that you are supplying a Hessian by

options = optimoptions('fmincon','Algorithm','interior-point',...

 'Hessian','user-supplied','HessFcn',@hessianfcn);

For an example, see “fmincon Interior-Point Algorithm with Analytic Hessian” on
page 6-50.

The interior-point algorithm has several more options for Hessians; see “Choose
Input Hessian for interior-point fmincon” on page 2-21:

• options = optimoptions('fmincon','Hessian','bfgs');

fmincon calculates the Hessian by a dense quasi-Newton approximation. This is the
default Hessian approximation.

• options = optimoptions('fmincon','Hessian','lbfgs');

14 Functions — Alphabetical List

14-62

fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton
approximation. The default memory, 10 iterations, is used.

• options = optimoptions('fmincon','Hessian',

{'lbfgs',positive integer});

fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton
approximation. The positive integer specifies how many past iterations should be
remembered.

• options = optimoptions('fmincon','Hessian','fin-diff-grads',...

'SubproblemAlgorithm','cg','GradObj','on',...

'GradConstr','on');

fmincon calculates a Hessian-times-vector product by finite differences of the
gradient(s). You must supply the gradient of the objective function, and also gradients
of nonlinear constraints (if they exist).

Hessian Multiply Function

The interior-point and trust-region-reflective algorithms allow you to supply
a Hessian multiply function. This function gives the result of a Hessian-times-vector
product, without computing the Hessian directly. This can save memory.

The syntaxes for the two algorithms differ:

• For the interior-point algorithm, the syntax is

W = HessMultFcn(x,lambda,v);

The result W should be the product H*v, where H is the Hessian of the Lagrangian at x
(see Equation 14-1), lambda is the Lagrange multiplier (computed by fmincon), and
v is a vector of size n-by-1. Set options as follows:

options = optimoptions('fmincon','Algorithm','interior-point','Hessian','user-supplied',...

 'SubproblemAlgorithm','cg','HessMult',@HessMultFcn);

Supply the function HessMultFcn, which returns an n-by-1 vector, where n is the
number of dimensions of x. The HessMult option enables you to pass the result of
multiplying the Hessian by a vector without calculating the Hessian.

• The trust-region-reflective algorithm does not involve lambda:

W = HessMultFcn(H,v);

 fmincon

14-63

The result W = H*v. fmincon passes H as the value returned in the third output
of the objective function (see “Writing Scalar Objective Functions” on page 2-18).
fmincon also passes v, a vector or matrix with n rows. The number of columns in v
can vary, so write HessMultFcn to accept an arbitrary number of columns. H does not
have to be the Hessian; rather, it can be anything that enables you to calculate W =
H*v.

Set options as follows:

options = optimoptions('fmincon','Algorithm','trust-region-reflective',...

 'Hessian','user-supplied','HessMult',@HessMultFcn);

For an example using a Hessian multiply function with the trust-region-
reflective algorithm, see “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-75.

Algorithms

Interior-Point Optimization

This algorithm is described in “fmincon Interior Point Algorithm” on page 6-37. There is
more extensive description in [1], [41], and [9].

SQP Optimization

The fmincon 'sqp' algorithm is similar to the 'active-set' algorithm described
in “Active-Set Optimization” on page 14-63. “fmincon SQP Algorithm” on page 6-36
describes the main differences. In summary, these differences are:

• “Strict Feasibility With Respect to Bounds” on page 6-36
• “Robustness to Non-Double Results” on page 6-36
• “Refactored Linear Algebra Routines” on page 6-36
• “Reformulated Feasibility Routines” on page 6-36

Active-Set Optimization

fmincon uses a sequential quadratic programming (SQP) method. In this method, the
function solves a quadratic programming (QP) subproblem at each iteration. fmincon

14 Functions — Alphabetical List

14-64

updates an estimate of the Hessian of the Lagrangian at each iteration using the BFGS
formula (see fminunc and references [7] and [8]).

fmincon performs a line search using a merit function similar to that proposed by [6],
[7], and [8]. The QP subproblem is solved using an active set strategy similar to that
described in [5]. “fmincon Active Set Algorithm” on page 6-26 describes this algorithm in
detail.

See also “SQP Implementation” on page 6-29 for more details on the algorithm used.

Trust-Region-Reflective Optimization

The 'trust-region-reflective' algorithm is a subspace trust-region method
and is based on the interior-reflective Newton method described in [3] and [4]. Each
iteration involves the approximate solution of a large linear system using the method
of preconditioned conjugate gradients (PCG). See the trust-region and preconditioned
conjugate gradient method descriptions in “fmincon Trust Region Reflective Algorithm”
on page 6-21.
• “Optimization Problem Setup”
• “Constrained Nonlinear Optimization Algorithms” on page 6-21

References

[1] Byrd, R. H., J. C. Gilbert, and J. Nocedal. “A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming.” Mathematical Programming, Vol
89, No. 1, 2000, pp. 149–185.

[2] Byrd, R. H., Mary E. Hribar, and Jorge Nocedal. “An Interior Point Algorithm for
Large-Scale Nonlinear Programming.” SIAM Journal on Optimization, Vol 9, No.
4, 1999, pp. 877–900.

[3] Coleman, T. F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds.” SIAM Journal on Optimization, Vol. 6, 1996,
pp. 418–445.

[4] Coleman, T. F. and Y. Li. “On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds.” Mathematical
Programming, Vol. 67, Number 2, 1994, pp. 189–224.

[5] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization, London, Academic
Press, 1981.

 fmincon

14-65

[6] Han, S. P. “A Globally Convergent Method for Nonlinear Programming.” Journal of
Optimization Theory and Applications, Vol. 22, 1977, pp. 297.

[7] Powell, M. J. D. “A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations.” Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics, Springer-Verlag, Vol. 630, 1978.

[8] Powell, M. J. D. “The Convergence of Variable Metric Methods For Nonlinearly
Constrained Optimization Calculations.” Nonlinear Programming 3 (O. L.
Mangasarian, R. R. Meyer, and S. M. Robinson, eds.), Academic Press, 1978.

[9] Waltz, R. A., J. L. Morales, J. Nocedal, and D. Orban. “An interior algorithm for
nonlinear optimization that combines line search and trust region steps.”
Mathematical Programming, Vol 107, No. 3, 2006, pp. 391–408.

See Also
fminbnd | fminsearch | fminunc | optimoptions | optimtool

Introduced before R2006a

14 Functions — Alphabetical List

14-66

fminimax
Solve minimax constraint problem

Equation
Finds the minimum of a problem specified by

minmax ()

()

()

x i
iF x

c x

ceq x

A x b

Aeq x beq

lb x

 such that

£

=

◊ £

◊ =

£

0

0

££

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô ub

where b and beq are vectors, A and Aeq are matrices, and c(x), ceq(x), and F(x) are
functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-30.

You can also solve max-min problems with fminimax, using the identity

maxmin () min max () .
x i

i
x i

i
F x F x= - -()

You can solve problems of the form

minmax ()
x i

i
F x

by using the MinAbsMax option; see “Notes” on page 14-77.

Syntax
x = fminimax(fun,x0)

x = fminimax(fun,x0,A,b)

x = fminimax(fun,x0,A,b,Aeq,beq)

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 fminimax

14-67

x = fminimax(problem)

[x,fval] = fminimax(...)

[x,fval,maxfval] = fminimax(...)

[x,fval,maxfval,exitflag] = fminimax(...)

[x,fval,maxfval,exitflag,output] = fminimax(...)

[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)

Description
fminimax minimizes the worst-case (largest) value of a set of multivariable functions,
starting at an initial estimate. This is generally referred to as the minimax problem.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective functions and nonlinear constraint functions, if necessary.

x = fminimax(fun,x0) starts at x0 and finds a minimax solution x to the functions
described in fun.

x = fminimax(fun,x0,A,b) solves the minimax problem subject to the linear
inequalities A*x ≤ b.

x = fminimax(fun,x0,A,b,Aeq,beq) solves the minimax problem subject to the
linear equalities Aeq*x = beq as well. Set A = [] and b = [] if no inequalities exist.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables in x, so that the solution is always in the range
lb ≤ x ≤ ub.

Note: See “Iterations Can Violate Constraints” on page 2-32.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimax
problem to the nonlinear inequalities c(x) or equality constraints ceq(x) defined in
nonlcon. fminimax optimizes such that c(x) ≤ 0 and ceq(x) = 0. Set lb = [] and/
or ub = [] if no bounds exist.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes with
the optimization options specified in options. Use optimoptions to set these options.

14 Functions — Alphabetical List

14-68

x = fminimax(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-68.

Create the problem structure by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

[x,fval] = fminimax(...) returns the value of the objective function fun at the
solution x.

[x,fval,maxfval] = fminimax(...) returns the maximum of the objective
functions in the input fun evaluated at the solution x.

[x,fval,maxfval,exitflag] = fminimax(...) returns a value exitflag that
describes the exit condition of fminimax.

[x,fval,maxfval,exitflag,output] = fminimax(...) returns a structure
output with information about the optimization.

[x,fval,maxfval,exitflag,output,lambda] = fminimax(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the solution x.

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the output fval is [].

Input Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments passed
into fminimax. This section provides function-specific details for fun, nonlcon, and
problem:

fun The function to be minimized. fun is a function that accepts a vector x and returns a
vector F, the objective functions evaluated at x. The function fun can be specified as a
function handle for a file:
x = fminimax(@myfun,x0)

where myfun is a MATLAB function such as
function F = myfun(x)

 fminimax

14-69

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.
x = fminimax(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a vector using
linear indexing.

To minimize the worst case absolute values of any of the elements of the vector F(x)
(i.e., min{max abs{F(x)} }), partition those objectives into the first elements of F and use
optimoptions to set the MinAbsMax option to be the number of such objectives.

If the gradient of the objective function can also be computed and the GradObj option is
'on', as set by

options = optimoptions('fminimax','GradObj','on')

then the function fun must return, in the second output argument, the gradient value
G, a matrix, at x. The gradient consists of the partial derivative dF/dx of each F at the
point x. If F is a vector of length m and x has length n, where n is the length of x0, then
the gradient G of F(x) is an n-by-m matrix where G(i,j) is the partial derivative of
F(j) with respect to x(i) (i.e., the jth column of G is the gradient of the jth objective
function F(j)).

By checking the value of nargout, the function can avoid computing G when myfun is
called with only one output argument (in the case where the optimization algorithm
only needs the value of F but not G).
function [F,G] = myfun(x)

F = ... % Compute the function values at x

if nargout > 1 % Two output arguments

 G = ... % Gradients evaluated at x

end

Note: Setting GradObj to 'on' is effective only when there is no nonlinear constraint,
or when the nonlinear constraint has GradConstr set to 'on' as well. This is because
internally the objective is folded into the constraints, so the solver needs both gradients
(objective and constraint) supplied in order to avoid estimating a gradient.

 nonlcon The function that computes the nonlinear inequality constraints c(x) ≤ 0 and
nonlinear equality constraints ceq(x) = 0. The function nonlcon accepts a vector
x and returns two vectors c and ceq. The vector c contains the nonlinear inequalities

14 Functions — Alphabetical List

14-70

evaluated at x, and ceq contains the nonlinear equalities evaluated at x. The function
nonlcon can be specified as a function handle.

x = fminimax(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)

c = ... % Compute nonlinear inequalities at x

ceq = ... % Compute nonlinear equalities at x

If the gradients of the constraints can also be computed and the GradConstr option is
'on', as set by

options = optimoptions('fminimax','GradConstr','on')

then the function nonlcon must also return, in the third and fourth output arguments,
GC, the gradient of c(x), and GCeq, the gradient of ceq(x). “Nonlinear Constraints”
on page 2-35 explains how to “conditionalize” the gradients for use in solvers that do not
accept supplied gradients, and explains the syntax of gradients.

Note: Setting GradConstr to 'on' is effective only when GradObj is set to 'on' as
well. This is because internally the objective is folded into the constraint, so the solver
needs both gradients (objective and constraint) supplied in order to avoid estimating a
gradient.

Note Because Optimization Toolbox functions only accept inputs of type double, user-
supplied objective and nonlinear constraint functions must return outputs of type
double.
objective Objective function
x0 Initial point for x
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds

problem

ub Vector of upper bounds

 fminimax

14-71

nonlcon Nonlinear constraint function
solver 'fminimax'

options Options created with optimoptions

Output Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments returned
by fminimax. This section provides function-specific details for exitflag, lambda,
maxfval, and output:

Integer identifying the reason the algorithm terminated. The following
lists the values of exitflag and the corresponding reasons the algorithm
terminated:
1 Function converged to a solution x.
4 Magnitude of the search direction less than the

specified tolerance and constraint violation less
than options.TolCon.

5 Magnitude of directional derivative less than the
specified tolerance and constraint violation less
than options.TolCon.

0 Number of iterations exceeded options.MaxIter
or number of function evaluations exceeded
options.MaxFunEvals.

-1 Algorithm was terminated by the output function.

exitflag

-2 No feasible point was found.
Structure containing the Lagrange multipliers at the solution x (separated by
constraint type). The fields of the structure are
lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities
ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities

14 Functions — Alphabetical List

14-72

maxfval Maximum of the function values evaluated at the solution x, that is,
maxfval = max{fun(x)}.
Structure containing information about the optimization. The fields of the
structure are
iterations Number of iterations taken.
funcCount Number of function evaluations.
lssteplength Size of line search step relative to search direction
stepsize Final displacement in x
algorithm Optimization algorithm used.
firstorderopt Measure of first-order optimality
constrviolation Maximum of constraint functions

output

message Exit message

Options

Optimization options used by fminimax. Use optimoptions to set or change options.
See “Optimization Options Reference” on page 13-7 for detailed information.

Diagnostics Display diagnostic information about the function to
be minimized or solved. The choices are 'on' or the
default, 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page
3-16):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and

gives the default exit message.
• 'iter-detailed' displays output at each

iteration, and gives the technical exit message.

 fminimax

14-73

• 'notify' displays output only if the function
does not converge, and gives the default exit
message.

• 'notify-detailed' displays output only if
the function does not converge, and gives the
technical exit message.

• 'final' (default) displays just the final output,
and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor for finite differences.
When you set FinDiffRelStep to a vector v,
forward finite differences steps delta are
delta = v.*sign

′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) =
1. Central finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The
default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate gradients, are
either 'forward' (the default), or 'central'
(centered). 'central' takes twice as many function
evaluations, but should be more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. So, for
example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point
outside bounds.

FunValCheck Check whether objective function and constraints
values are valid. 'on' displays an error when the
objective function or constraints return a value
that is complex, Inf, or NaN. The default 'off'
displays no error.

14 Functions — Alphabetical List

14-74

GradConstr Gradient for the user-defined constraints. When set
to 'on', fminimax expects the constraint function
to have four outputs, as described in nonlcon in
“Input Arguments” on page 14-68. When set to
the default 'off', fminimax estimates gradients of
the nonlinear constraints by finite differences.

GradObj Gradient for the user-defined objective function. See
the preceding description of fun to see how to define
the gradient in fun. Set to 'on' to have fminimax
use a user-defined gradient of the objective function.
The default 'off' causes fminimax to estimate
gradients using finite differences.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default value is
100*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-61 and “Iterations and
Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive
integer. The default value is 400. See “Tolerances
and Stopping Criteria” on page 2-61 and “Iterations
and Function Counts” on page 3-10.

MaxSQPIter Maximum number of SQP iterations
allowed, a positive integer. The default
is 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds).

MeritFunction Use the goal attainment/minimax merit function
if set to 'multiobj' (default). Use the fmincon
merit function if set to 'singleobj'.

MinAbsMax Number of elements of Fi(x) to minimize the
maximum absolute value of Fi. See “Notes” on page
14-77. The default is 0.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either
as a function handle or as a cell array of function
handles. The default is none ([]). See “Output
Function” on page 13-20.

 fminimax

14-75

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.
• @optimplotconstrviolation plots the

maximum constraint violation.
• @optimplotstepsize plots the step size.

For information on writing a custom plot function,
see “Plot Functions” on page 13-29.

RelLineSrchBnd Relative bound (a real nonnegative scalar
value) on the line search step length such
that the total displacement in x satisfies |
Δx(i)| ≤ relLineSrchBnd· max(|x(i)|,|typicalx(i)|).
This option provides control over the magnitude of
the displacements in x for cases in which the solver
takes steps that it considers too large. The default is
no bounds ([]).

RelLineSrchBndDuration Number of iterations for which the bound specified
in RelLineSrchBnd should be active (default is 1).

TolCon Termination tolerance on the constraint violation, a
positive scalar. The default is 1e-6. See “Tolerances
and Stopping Criteria” on page 2-61.

TolConSQP Termination tolerance on inner iteration SQP
constraint violation, a positive scalar. The default is
1e-6.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-6. See “Tolerances
and Stopping Criteria” on page 2-61.

TolX Termination tolerance on x, a positive scalar. The
default value is 1e-6. See “Tolerances and Stopping
Criteria” on page 2-61.

14 Functions — Alphabetical List

14-76

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value is
ones(numberofvariables,1). fminimax uses
TypicalX for scaling finite differences for gradient
estimation.

UseParallel When true, estimate gradients in parallel. Disable
by setting to the default false. See “Parallel
Computing”.

Examples

Find values of x that minimize the maximum value of
[f1(x), f2(x), f3(x), f4(x), f5(x)]

where

f x x x x x

f x x x

f x x x

1 1
2

2
2

1 2

2 1
2

2
2

3 1 2

2 48 40 304

3

3

() ,

() ,

()

= + - - +

= - -

= + -118

8

4 1 2

5 1 2

,

() ,

() .

f x x x

f x x x

= - -

= + -

First, write a file that computes the five functions at x.

function f = myfun(x)

f(1)= 2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304; % Objectives

f(2)= -x(1)^2 - 3*x(2)^2;

f(3)= x(1) + 3*x(2) -18;

f(4)= -x(1)- x(2);

f(5)= x(1) + x(2) - 8;

Next, invoke an optimization routine.

x0 = [0.1; 0.1]; % Make a starting guess at solution

[x,fval] = fminimax(@myfun,x0);

After seven iterations, the solution is

 fminimax

14-77

x,fval

x =

 4.0000

 4.0000

fval =

 0.0000 -64.0000 -2.0000 -8.0000 -0.0000

Notes

You can solve problems of the form

minmax (),
x i

iG x

where

G x
F x i m

F x i m
i

i

i

()
()

() .
=

£ £

>

Ï
Ì
ÓÔ

1

Here m is the value of the MinAbsMax option. The advantage of this formulation is you
can minimize the absolute value of some components of F, even though the absolute
value function is not smooth.

In order to use this option, reorder the elements of F, if necessary, so the first elements
are those for which you want the minimum absolute value.

For example, consider the problem in “Examples” on page 14-76. Modify the problem
to find the minimum of the maximum absolute values of all fi(x). Solve this problem by
invoking fminimax with the commands

x0 = [0.1; 0.1]; % Make a starting guess at the solution

options = optimoptions('fminimax','MinAbsMax',5); % Minimize abs. values

[x,fval] = fminimax(@myfun,x0,...

 [],[],[],[],[],[],[],options);

After seven iterations, the solution is

x =

 4.9256

14 Functions — Alphabetical List

14-78

 2.0796

fval =

 37.2356 -37.2356 -6.8357 -7.0052 -0.9948

Limitations

The function to be minimized must be continuous. fminimax might only give local
solutions.

More About

Algorithms

fminimax internally reformulates the minimax problem into an equivalent Nonlinear
Linear Programming problem by appending additional (reformulation) constraints of
the form Fi(x) ≤ γ to the constraints given in “Equation” on page 14-66, and then
minimizing γ over x. fminimax uses a sequential quadratic programming (SQP) method
[1] to solve this problem.

Modifications are made to the line search and Hessian. In the line search an exact merit
function (see [2] and [4]) is used together with the merit function proposed by [3] and
[5]. The line search is terminated when either merit function shows improvement. The
function uses a modified Hessian that takes advantage of the special structure of this
problem. Using optimoptions to set the MeritFunction option to'singleobj' uses
the merit function and Hessian used in fmincon.

See also “SQP Implementation” on page 6-29 for more details on the algorithm used
and the types of procedures printed under the Procedures heading when you set the
Display option to'iter'.
• “Create Function Handle”
• “Multiobjective Optimization”

References

[1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New Algorithm for
Statistical Circuit Design Based on Quasi-Newton Methods and Function

 fminimax

14-79

Splitting,” IEEE Trans. Circuits and Systems, Vol. CAS-26, pp. 784-794, Sept.
1979.

[2] Grace, A.C.W., “Computer-Aided Control System Design Using Optimization
Techniques,” Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.

[3] Han, S.P., “A Globally Convergent Method For Nonlinear Programming,” Journal of
Optimization Theory and Applications, Vol. 22, p. 297, 1977.

[4] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance
Optimization,” IEEE Trans. of Circuits and Systems, Vol. CAS-26, Sept. 1979.

[5] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in
Mathematics, Vol. 630, Springer Verlag, 1978.

See Also
fgoalattain | lsqnonlin | optimoptions | optimtool

14 Functions — Alphabetical List

14-80

fminsearch
Find minimum of unconstrained multivariable function using derivative-free method

Equation
Finds the minimum of a problem specified by

min ()
x

f x

where f(x) is a function that returns a scalar.

x is a vector or a matrix; see “Matrix Arguments” on page 2-30.

Syntax
x = fminsearch(fun,x0)

x = fminsearch(fun,x0,options)

x = fminsearch(problem)

[x,fval] = fminsearch(...)

[x,fval,exitflag] = fminsearch(...)

[x,fval,exitflag,output] = fminsearch(...)

Description
fminsearch attempts to find a minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained nonlinear
optimization.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective function, if necessary.

x = fminsearch(fun,x0) starts at the point x0 and returns a value x that is a local
minimizer of the function described in fun. fun is either a function handle to a file or is
an anonymous function. x0 can be a scalar, vector, or matrix.

 fminsearch

14-81

x = fminsearch(fun,x0,options) minimizes with the optimization options specified
in the structure options. Use optimset to set these options.

x = fminsearch(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-81.

Create the structure problem by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

[x,fval] = fminsearch(...) returns in fval the value of the objective function fun
at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that describes
the exit condition of fminsearch.

[x,fval,exitflag,output] = fminsearch(...) returns a structure output that
contains information about the optimization.

Input Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments passed
into fminsearch. This section provides function-specific details for fun, options, and
problem:

fun The function to be minimized. fun is a function handle for a function that
accepts a vector x and returns a scalar f, the objective function evaluated
at x. The function fun can be specified as a function handle for a file:

x = fminsearch(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)

f = ... % Compute function value at x

fun can also be a function handle for an anonymous function, such as

x = fminsearch(@(x)norm(x)^2,x0,A,b);

options “Options” on page 14-82 provides the function-specific details for the
options values.

problem objective Objective function

14 Functions — Alphabetical List

14-82

x0 Initial point for x
solver 'fminsearch'

options Options structure created using optimset

Output Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments returned
by fminsearch. This section provides function-specific details for exitflag and
output:

Integer identifying the reason the algorithm terminated. The
following lists the values of exitflag and the corresponding
reasons the algorithm terminated.
1 The function converged to a solution x.
0 Number of iterations exceeded

options.MaxIter or number of function
evaluations exceeded options.MaxFunEvals.

exitflag

-1 The algorithm was terminated by the output
function.

Structure containing information about the optimization. The fields
of the structure are
iterations Number of iterations
funcCount Number of function evaluations
algorithm 'Nelder-Mead simplex direct search'

output

message Exit message

Options

Optimization options used by fminsearch. You can use optimset to set or change
the values of these fields in the options structure options. See “Optimization Options
Reference” on page 13-7 for detailed information.

Display Level of display (see “Iterative Display” on page 3-16):

 fminsearch

14-83

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration.
• 'notify' displays output only if the function does not

converge.
• 'final' (default) displays just the final output.

FunValCheck Check whether objective function values are valid. 'on'
displays an error when the objective function returns a value
that is complex or NaN. The default 'off' displays no
error.

MaxFunEvals Maximum number of function evaluations allowed, a
positive integer. The default is 200*numberOfVariables.
See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer.
The default value is 200*numberOfVariables. See
“Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Function” on page 13-20.

PlotFcns Plots various measures of progress while the algorithm
executes, select from predefined plots or write your own.
Pass a function handle or a cell array of function handles.
The default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolFun Termination tolerance on the function value, a positive
scalar. The default is 1e-4. See “Tolerances and Stopping
Criteria” on page 2-61. Unlike other solvers, fminsearch
stops when it satisfies both TolFun and TolX.

14 Functions — Alphabetical List

14-84

TolX Termination tolerance on x, a positive scalar. The default
value is 1e-4. See “Tolerances and Stopping Criteria” on
page 2-61. Unlike other solvers, fminsearch stops when it
satisfies both TolFun and TolX.

Examples

Example 1: Minimizing Rosenbrock's Function with fminsearch

A classic test example for multidimensional minimization is the Rosenbrock banana
function:

f x x x x() () .= -() + -100 12 1
2

2

1
2

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The anonymous function shown here defines the function and returns a
function handle called banana:

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

[x,fval,exitflag] = fminsearch(banana,[-1.2, 1])

This produces

x =

 1.0000 1.0000

fval =

 8.1777e-010

exitflag =

 1

This indicates that the minimizer was found at [1 1] with a value near zero.

Example 2

You can modify the first example by adding a parameter a to the second term of the
banana function:

 fminsearch

14-85

f x x x a x() () .= -() + -100 2 1
2

2

1
2

This changes the location of the minimum to the point [a,a^2]. To minimize this
function for a specific value of a, for example a = sqrt(2), create a one-argument
anonymous function that captures the value of a.

a = sqrt(2);

banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval,exitflag] = fminsearch(banana, [-1.2, 1], ...

 optimset('TolX',1e-8))

seeks the minimum [sqrt(2), 2] to an accuracy higher than the default on x. The
result is

x =

 1.4142 2.0000

fval =

 4.2065e-018

exitflag =

 1

Limitations
fminsearch solves nondifferentiable problems and can often handle discontinuity,
particularly if it does not occur near the solution. fminsearch might only give local
solutions.

fminsearch only minimizes over the real numbers, that is, x must only consist of real
numbers and f(x) must only return real numbers. When x has complex variables, they
must be split into real and imaginary parts.

Notes
fminsearch is not the preferred choice for solving problems that are sums of squares,
that is, of the form

14 Functions — Alphabetical List

14-86

min () min () () ... ()
x x

nf x f x f x f x
2

2
1

2
2

2 2
= + + +()

Instead use the lsqnonlin function, which has been optimized for problems of this form.

More About

Algorithms

fminsearch uses the simplex search method of [1]. This is a direct search method that
does not use numerical or analytic gradients as in fminunc. The algorithm is described
in detail in “fminsearch Algorithm” on page 6-10.

fminsearch is generally less efficient than fminunc for problems of order greater than
two. However, when the problem is highly discontinuous, fminsearch might be more
robust.
• “Create Function Handle”
• “Anonymous Functions”

References

[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties
of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM Journal of
Optimization, Vol. 9, Number 1, pp. 112–147, 1998.

See Also
fminbnd | fminunc | optimset | optimtool

 fminunc

14-87

fminunc
Find minimum of unconstrained multivariable function

Nonlinear programming solver.

Finds the minimum of a problem specified by

min ()
x

f x

where f(x) is a function that returns a scalar.

x is a vector or a matrix; see “Matrix Arguments” on page 2-30.

Syntax

x = fminunc(fun,x0)

x = fminunc(fun,x0,options)

x = fminunc(problem)

[x,fval] = fminunc(___)

[x,fval,exitflag,output] = fminunc(___)

[x,fval,exitflag,output,grad,hessian] = fminunc(___)

Description

x = fminunc(fun,x0) starts at the point x0 and attempts to find a local minimum x of
the function described in fun. The point x0 can be a scalar, vector, or matrix.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective function and nonlinear constraint functions, if necessary.

fminunc is for nonlinear problems without constraints. If your problem has constraints,
generally use fmincon. See “Optimization Decision Table” on page 2-5.

x = fminunc(fun,x0,options) minimizes fun with the optimization options
specified in options. Use optimoptions to set these options.

14 Functions — Alphabetical List

14-88

x = fminunc(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-93. Create the problem
structure by exporting a problem from Optimization app, as described in “Exporting Your
Work” on page 5-11.

[x,fval] = fminunc(___), for any syntax, returns the value of the objective function
fun at the solution x.

[x,fval,exitflag,output] = fminunc(___) additionally returns a value
exitflag that describes the exit condition of fminunc, and a structure output with
information about the optimization process.

[x,fval,exitflag,output,grad,hessian] = fminunc(___) additionally
returns:

• grad — Gradient of fun at the solution x.
• hessian — Hessian of fun at the solution x. See “fminunc Hessian” on page 3-26.

Examples

Minimize a Polynomial

Minimize the function f x x x x x x x() = + + - +3 2 4 51
2

1 2 2
2

1 2 .

Write an anonymous function that calculates the objective.

fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2);

Call fminunc to find a minimum of fun near [1,1].

x0 = [1,1];

[x,fval] = fminunc(fun,x0);

After a few iterations, fminunc returns the solution, x, and the value of the function at
x, fval.

x,fval

x =

 2.2500 -4.7500

 fminunc

14-89

fval =

 -16.3750

Supply the Gradient

fminunc can be faster and more reliable when you provide derivatives.

Write an objective function that returns the gradient as well as the function value. Use
the conditionalized form described in “Including Derivatives” on page 2-20. The objective
function is Rosenbrock's function,

f x x x x() () ,= -() + -100 12 1
2

2

1
2

which has gradient

—f x
x x x x

x x
() .=

- -() - -()

-()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

400 2 1

200

2 1
2

1 1

2 1
2

function [f,g] = rosenbrockwithgrad(x)

% Calculate objective f

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required

 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

end

Save this code as a file on your MATLAB path, named rosenbrockwithgrad.m.

Create options to use the objective function’s gradient. Also, set the algorithm to
'trust-region'.

options = optimoptions('fminunc','Algorithm','trust-region','GradObj','on');

Set the initial point to [-1,2]. Then call fminunc.

x0 = [-1,2];

fun = @rosenbrockwithgrad;

x = fminunc(fun,x0,options)

Local minimum found.

14 Functions — Alphabetical List

14-90

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

<stopping criteria details>

x =

 1.0000 1.0000

Use a Problem Structure

Solve the same problem as in “Supply the Gradient” on page 14-89 using a problem
structure instead of separate arguments.

Write an objective function that returns the gradient as well as the function value. Use
the conditionalized form described in “Including Derivatives” on page 2-20. The objective
function is Rosenbrock's function,

f x x x x() () ,= -() + -100 12 1
2

2

1
2

which has gradient

—f x
x x x x

x x
() .=

- -() - -()

-()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

400 2 1

200

2 1
2

1 1

2 1
2

function [f,g] = rosenbrockwithgrad(x)

% Calculate objective f

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required

 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

 200*(x(2)-x(1)^2)];

end

Save this code as a file on your MATLAB path, named rosenbrockwithgrad.m.

Create options to use the objective function’s gradient. Also, set the algorithm to
'trust-region'.

options = optimoptions('fminunc','Algorithm','trust-region','GradObj','on');

 fminunc

14-91

Create a problem structure including the initial point x0 = [-1,2].

problem.options = options;

problem.x0 = [-1,2];

problem.objective = @rosenbrockwithgrad;

problem.solver = 'fminunc';

Solve the problem.

x = fminunc(problem)

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

<stopping criteria details>

x =

 1.0000 1.0000

Obtain the Optimal Objective Function Value

Find both the location of the minimum of a nonlinear function and the value of the
function at that minimum.

The objective function is

f x x e xx
() () / .= +

-
1 202

2

2
2

fun = @(x)x(1)*exp(-(x(1)^2 + x(2)^2)) + (x(1)^2 + x(2)^2)/20;

Find the location and objective function value of the minimizer starting at x0 = [1,2].

x0 = [1,2];

[x,fval] = fminunc(fun,x0)

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

<stopping criteria details>

14 Functions — Alphabetical List

14-92

x =

 -0.6691 0.0000

fval =

 -0.4052

Examine the Solution Process

Choose fminunc options and outputs to examine the solution process.

Set options to obtain iterative display and use the 'quasi-newton' algorithm.

options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');

The objective function is

fun = @(x)x(1)*exp(-(x(1)^2 + x(2)^2)) + (x(1)^2 + x(2)^2)/20;

Start the minimization at x0 = [1,2], and obtain outputs that enable you to examine
the solution quality and process.

x0 = [1,2];

[x,fval,exitflag,output] = fminunc(fun,x0,options)

 First-order

 Iteration Func-count f(x) Step-size optimality

 0 3 0.256738 0.173

 1 6 0.222149 1 0.131

 2 9 0.15717 1 0.158

 3 18 -0.227902 0.438133 0.386

 4 21 -0.299271 1 0.46

 5 30 -0.404028 0.102071 0.0458

 6 33 -0.404868 1 0.0296

 7 36 -0.405236 1 0.00119

 8 39 -0.405237 1 0.000252

 9 42 -0.405237 1 7.97e-07

Local minimum found.

Optimization completed because the size of the gradient is less than

 fminunc

14-93

the default value of the function tolerance.

x =

 -0.6691 0.0000

fval =

 -0.4052

exitflag =

 1

output =

 iterations: 9

 funcCount: 42

 stepsize: 2.9343e-04

 lssteplength: 1

 firstorderopt: 7.9721e-07

 algorithm: 'quasi-newton'

 message: 'Local minimum found....'

• The exit flag 1 shows that the solution is a local optimum.
• The output structure shows the number of iterations, number of function

evaluations, and other information.
• The iterative display also shows the number of iterations and function evaluations.

• “Unconstrained Optimization”

Input Arguments

fun — Function to minimize
function handle | function name

14 Functions — Alphabetical List

14-94

Function to minimize, specified as a function handle or function name. fun is a function
that accepts a vector or array x and returns a real scalar f, the objective function
evaluated at x.

Specify fun as a function handle for a file:

x = fmincon(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)

f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fmincon(@(x)norm(x)^2,x0,A,b);

If you can compute the gradient of fun and the GradObj option is set to 'on', as set by

options = optimoptions('fminunc','GradObj','on')

then fun must return the gradient vector g(x) in the second output argument.

If you can also compute the Hessian matrix and the Hessian option is set to 'on'
via options = optimoptions('fminunc','Hessian','user-supplied') and
the Algorithm option is set to 'trust-region-reflective', fun must return the
Hessian value H(x), a symmetric matrix, in a third output argument. fun can give a
sparse Hessian. See “Writing Objective Functions” on page 2-17 for details.

The trust-region-reflective algorithm allows you to supply a Hessian multiply
function. This function gives the result of a Hessian-times-vector product without
computing the Hessian directly. This can save memory. See “Hessian Multiply Function”
on page 14-62.
Example: fun = @(x)sin(x(1))*cos(x(2))

Data Types: char | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements
in, and size of, x0 to determine the number and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

 fminunc

14-95

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as
optimset returns.

Some options apply to all algorithms, and others are relevant for particular algorithms.
See “Optimization Options Reference” on page 13-7 for detailed information.

All Algorithms
Algorithm

If you use optimset
(not recommended,
see “Choose Between
optimoptions and
optimset” on page 2-57),
use LargeScale instead
of Algorithm.

Choose the fminunc algorithm. Choices are 'trust-region'
(default) or 'quasi-newton'.

The 'trust-region' algorithm requires you to provide the
gradient (see the description of fun), or else fminunc uses the
'quasi-newton' algorithm. For information on choosing the
algorithm, see “Choosing the Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradient of objective) to
finite-differencing derivatives. Choices are 'off' (default) or
'on'.

Diagnostics Display diagnostic information about the function to be
minimized or solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a
positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a
positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-16):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the

default exit message.
• 'iter-detailed' displays output at each iteration, and

gives the technical exit message.
• 'notify' displays output only if the function does not

converge, and gives the default exit message.

14 Functions — Alphabetical List

14-96

• 'notify-detailed' displays output only if the function
does not converge, and gives the technical exit message.

• 'final' (default) displays only the final output, and gives
the default exit message.

• 'final-detailed' displays only the final output, and
gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor for finite differences. When
you set FinDiffRelStep to a vector v, forward finite
differences steps delta are
delta = v.*sign′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) = 1. Central
finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The default is
sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

The trust-region algorithm uses FinDiffRelStep only when
DerivativeCheck is set to 'on'.

FinDiffType Finite differences, used to estimate gradients, are either
'forward' (the default), or 'central' (centered).
'central' takes twice as many function evaluations, but
should be more accurate. The trust-region algorithm uses
FinDiffType only when DerivativeCheck is set to 'on'.

FunValCheck Check whether objective function values are valid. The default
setting, 'off', does not perform a check. The 'on' setting
displays an error when the objective function returns a value
that is complex, Inf, or NaN.

GradObj Gradient for the objective function defined by the user. See
the description of fun to see how to define the gradient in fun.
Set to 'on' to have fminunc use a user-defined gradient of
the objective function. The default 'off' causes fminunc to
estimate gradients using finite differences. You must provide
the gradient, and set GradObj to 'on', to use the trust-region
algorithm. This option is not required for the quasi-Newton
algorithm.

 fminunc

14-97

LargeScale

If you use
optimoptions

(recommended, see
“Choose Between
optimoptions and
optimset” on page 2-57),
use Algorithm instead
of LargeScale.

Choose the algorithm. When set to the default 'on', use the
'trust-region' algorithm if possible. When set to 'off',
use the 'quasi-newton' algorithm.

The 'trust-region' algorithm requires you to provide the
gradient (see the description of fun). Otherwise, fminunc uses
the 'quasi-newton' algorithm. For more information, see
“Choosing the Algorithm” on page 2-7.

MaxFunEvals Maximum number of function evaluations allowed, a positive
integer. The default value is 100*numberOfVariables.
See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer.
The default value is 400. See “Tolerances and Stopping
Criteria” on page 2-61 and “Iterations and Function Counts”
on page 3-10.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Function” on page 13-20.

PlotFcns Plot various measures of progress while the algorithm
executes. Select from predefined plots or write your own. Pass
a function handle or a cell array of function handles. The
default is none ([]).

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.
• @optimplotstepsize plots the step size.
• @optimplotfirstorderopt plots the first-order

optimality measure.

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

14 Functions — Alphabetical List

14-98

TolFun Termination tolerance on the function value, a positive scalar.
The default is 1e-6. See “Tolerances and Stopping Criteria”
on page 2-61.

TolX Termination tolerance on x, a positive scalar. The default
value is 1e-6. See “Tolerances and Stopping Criteria” on page
2-61.

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point. The
default value is ones(numberofvariables,1). fminunc
uses TypicalX for scaling finite differences for gradient
estimation.

The trust-region algorithm uses TypicalX only for the
DerivativeCheck option.

trust-region Algorithm
Hessian If set to 'off' (default), fminunc approximates the Hessian

using finite differences.

If set to 'on', fminunc uses a user-defined Hessian for
the objective function. The Hessian is either defined in the
objective function (see fun), or is indirectly defined when using
HessMult.

HessMult

 fminunc

14-99

Function handle for Hessian multiply function. For large-
scale structured problems, this function computes the Hessian
matrix product H*Y without actually forming H. The function
is of the form

W = hmfun(Hinfo,Y)

where Hinfo contains the matrix used to compute H*Y.

The first argument is the same as the third argument
returned by the objective function fun, for example

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. The matrix W = H*Y, although H
is not formed explicitly. fminunc uses Hinfo to compute the
preconditioner. For information on how to supply values for
any additional parameters hmfun needs, see “Passing Extra
Parameters” on page 2-50.

Note 'Hessian' must be set to 'on' for fminunc to pass
Hinfo from fun to hmfun.

For an example, see “Minimization with Dense Structured
Hessian, Linear Equalities” on page 6-75.

14 Functions — Alphabetical List

14-100

HessPattern Sparsity pattern of the Hessian for finite differencing.
Set HessPattern(i,j) = 1 when you can have ∂2fun/
∂x(i)∂x(j) ≠ 0. Otherwise, set HessPattern(i,j) = 0.

Use HessPattern when it is inconvenient to compute the
Hessian matrix H in fun, but you can determine (say, by
inspection) when the ith component of the gradient of fun
depends on x(j). fminunc can approximate H via sparse
finite differences (of the gradient) if you provide the sparsity
structure of H as the value for HessPattern. In other words,
provide the locations of the nonzeros.

When the structure is unknown, do not set HessPattern.
The default behavior is as if HessPattern is a dense matrix
of ones. Then fminunc computes a full finite-difference
approximation in each iteration. This computation can
be expensive for large problems, so it is usually better to
determine the sparsity structure.

MaxPCGIter Maximum number of preconditioned conjugate gradient
(PCG) iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more
information, see “Trust Region Algorithm” on page 14-104.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative
integer. By default, fminunc uses diagonal preconditioning
(upper bandwidth of 0). For some problems, increasing the
bandwidth reduces the number of PCG iterations. Setting
PrecondBandWidth to Inf uses a direct factorization
(Cholesky) rather than the conjugate gradients (CG). The
direct factorization is computationally more expensive than
CG, but produces a better quality step towards the solution.

TolPCG Termination tolerance on the PCG iteration, a positive scalar.
The default is 0.1.

quasi-newton Algorithm

 fminunc

14-101

HessUpdate Method for choosing the search direction in the Quasi-Newton
algorithm. The choices are:

• 'bfgs', the default
• 'dfp'

• 'steepdesc'

See “Hessian Update” on page 6-9 for a description of these
methods.

InitialHessMatrix

This option will be
removed in a future
release.

Initial quasi-Newton matrix. This option is available only if
you set InitialHessType to 'user-supplied'. In that
case, you can set InitialHessMatrix to one of the following:

• A positive scalar — The initial matrix is the scalar times
the identity.

• A vector of positive values — The initial matrix is a
diagonal matrix with the entries of the vector on the
diagonal. This vector should be the same size as the x0
vector, the initial point.

InitialHessType

This option will be
removed in a future
release.

Initial quasi-Newton matrix type. The options are:

• 'identity'

• 'scaled-identity', the default
• 'user-supplied' — See InitialHessMatrix

ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the
objective function value at an iteration is less than or equal to
ObjectiveLimit, the iterations halt because the problem is
presumably unbounded. The default value is -1e20.

Example: options = optimoptions('fminunc','GradObj','on')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry

objective Objective function

14 Functions — Alphabetical List

14-102

Field Name Entry

x0 Initial point for x
solver 'fminunc'

options Options created with optimoptions

The simplest way to obtain a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments

x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size
of x0. Typically, x is a local solution to the problem when exitflag is positive. For
information on the quality of the solution, see “When the Solver Succeeds” on page 4-22.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally,
fval = fun(x).

exitflag — Reason fminunc stopped
integer

Reason fminunc stopped, returned as an integer.

1 Magnitude of gradient is smaller than the TolFun
tolerance.

2 Change in x was smaller than the TolX tolerance.
3 Change in the objective function value was less than the

TolFun tolerance.
5 Predicted decrease in the objective function was less

than the TolFun tolerance.

 fminunc

14-103

0 Number of iterations exceeded MaxIter or number of
function evaluations exceeded MaxFunEvals.

-1 Algorithm was terminated by the output function.
-3 Objective function at current iteration went below

ObjectiveLimit.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
firstorderopt Measure of first-order optimality
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations ('trust-region'

algorithm only)
lssteplength Size of line search step relative to search direction

('quasi-newton' algorithm only)
stepsize Final displacement in x
message Exit message

grad — Gradient at the solution
real vector

Gradient at the solution, returned as a real vector. grad gives the gradient of fun at the
point x(:).

hessian — Approximate Hessian
real matrix

Approximate Hessian, returned as a real matrix. For the meaning of hessian, see
“Hessian” on page 3-26.

14 Functions — Alphabetical List

14-104

More About

Algorithms

Trust Region Algorithm

The trust-region algorithm requires that you supply the gradient in fun and set
GradObj to 'on' using optimoptions. This algorithm is a subspace trust-region
method and is based on the interior-reflective Newton method described in [2] and [3].
Each iteration involves the approximate solution of a large linear system using the
method of preconditioned conjugate gradients (PCG). See “fminunc trust-region
Algorithm” on page 6-2, “Trust-Region Methods for Nonlinear Minimization” on page 6-2
and “Preconditioned Conjugate Gradient Method” on page 6-4.

Quasi-Newton Algorithm

The quasi-newton algorithm uses the BFGS Quasi-Newton method with a cubic
line search procedure. This quasi-Newton method uses the BFGS ([1],[5],[8], and [9])
formula for updating the approximation of the Hessian matrix. You can select the DFP
([4],[6], and [7]) formula, which approximates the inverse Hessian matrix, by setting
the HessUpdate option to 'dfp' (and the Algorithm option to 'quasi-newton').
You can select a steepest descent method by setting HessUpdate to 'steepdesc'
(and Algorithm to 'quasi-newton'), although this setting is usually inefficient. See
“fminunc quasi-newton Algorithm” on page 6-5.
• “Optimization Problem Setup”
• “Unconstrained Nonlinear Optimization Algorithms” on page 6-2

References

[1] Broyden, C. G. “The Convergence of a Class of Double-Rank Minimization
Algorithms.” Journal Inst. Math. Applic., Vol. 6, 1970, pp. 76–90.

[2] Coleman, T. F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds.” SIAM Journal on Optimization, Vol. 6, 1996,
pp. 418–445.

[3] Coleman, T. F. and Y. Li. “On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds.” Mathematical
Programming, Vol. 67, Number 2, 1994, pp. 189–224.

 fminunc

14-105

[4] Davidon, W. C. “Variable Metric Method for Minimization.” A.E.C. Research and
Development Report, ANL-5990, 1959.

[5] Fletcher, R. “A New Approach to Variable Metric Algorithms.” Computer Journal, Vol.
13, 1970, pp. 317–322.

[6] Fletcher, R. “Practical Methods of Optimization.” Vol. 1, Unconstrained Optimization,
John Wiley and Sons, 1980.

[7] Fletcher, R. and M. J. D. Powell. “A Rapidly Convergent Descent Method for
Minimization.” Computer Journal, Vol. 6, 1963, pp. 163–168.

[8] Goldfarb, D. “A Family of Variable Metric Updates Derived by Variational Means.”
Mathematics of Computing, Vol. 24, 1970, pp. 23–26.

[9] Shanno, D. F. “Conditioning of Quasi-Newton Methods for Function Minimization.”
Mathematics of Computing, Vol. 24, 1970, pp. 647–656.

See Also
fmincon | fminsearch | optimoptions

Introduced before R2006a

14 Functions — Alphabetical List

14-106

fseminf
Find minimum of semi-infinitely constrained multivariable nonlinear function

Equation

Finds the minimum of a problem specified by

min ()

,

,

,

() ,

()

x
f x

A x b

Aeq x beq

lb x ub

c x

ceq x

 such that

◊ £

◊ =

£ £

£

=

0

0,,

(,) , .K x w i ni i £ £ £

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô 0 1

b and beq are vectors, A and Aeq are matrices, c(x), ceq(x), and Ki(x,wi) are functions
that return vectors, and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can
be nonlinear functions. The vectors (or matrices) Ki(x,wi) ≤ 0 are continuous functions
of both x and an additional set of variables w1,w2,...,wn. The variables w1,w2,...,wn are
vectors of, at most, length two.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-30.

Syntax

x = fseminf(fun,x0,ntheta,seminfcon)

x = fseminf(fun,x0,ntheta,seminfcon,A,b)

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)

x = fseminf(problem)

[x,fval] = fseminf(...)

[x,fval,exitflag] = fseminf(...)

[x,fval,exitflag,output] = fseminf(...)

[x,fval,exitflag,output,lambda] = fseminf(...)

 fseminf

14-107

Description
fseminf finds a minimum of a semi-infinitely constrained scalar function of several
variables, starting at an initial estimate. The aim is to minimize f(x) so the constraints
hold for all possible values of wi∈ℜ1 (or wi∈ℜ2). Because it is impossible to calculate
all possible values of Ki(x,wi), a region must be chosen for wi over which to calculate an
appropriately sampled set of values.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the objective function and nonlinear constraint functions, if necessary.

x = fseminf(fun,x0,ntheta,seminfcon) starts at x0 and finds a minimum of the
function fun constrained by ntheta semi-infinite constraints defined in seminfcon.

x = fseminf(fun,x0,ntheta,seminfcon,A,b) also tries to satisfy the linear
inequalities A*x ≤ b.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) minimizes subject to the
linear equalities Aeq*x = beq as well. Set A = [] and b = [] if no inequalities exist.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub) defines a set of
lower and upper bounds on the design variables in x, so that the solution is always in the
range lb ≤ x ≤ ub.

Note: See “Iterations Can Violate Constraints” on page 2-32.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)

minimizes with the optimization options specified in options. Use optimoptions to set
these options.

x = fseminf(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-108.

Create the problem structure by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

[x,fval] = fseminf(...) returns the value of the objective function fun at the
solution x.

14 Functions — Alphabetical List

14-108

[x,fval,exitflag] = fseminf(...) returns a value exitflag that describes the
exit condition.

[x,fval,exitflag,output] = fseminf(...) returns a structure output that
contains information about the optimization.

[x,fval,exitflag,output,lambda] = fseminf(...) returns a structure lambda
whose fields contain the Lagrange multipliers at the solution x.

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the output fval is [].

Input Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments passed
into fseminf. This section provides function-specific details for fun, ntheta, options,
seminfcon, and problem:

fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun can be
specified as a function handle for a file

x = fseminf(@myfun,x0,ntheta,seminfcon)

where myfun is a MATLAB function such as

function f = myfun(x)

f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

fun = @(x)sin(x''*x);

If the gradient of fun can also be computed and the GradObj option is 'on', as
set by

options = optimoptions('fseminf','GradObj','on')

then the function fun must return, in the second output argument, the gradient
value g, a vector, at x.

 fseminf

14-109

ntheta The number of semi-infinite constraints.
options “Options” on page 14-112 provides the function-specific details for the options

values.
seminfcon

14 Functions — Alphabetical List

14-110

The function that computes the vector of nonlinear inequality constraints,
c, a vector of nonlinear equality constraints, ceq, and ntheta semi-infinite
constraints (vectors or matrices) K1, K2,..., Kntheta evaluated over an interval
S at the point x. The function seminfcon can be specified as a function handle.

x = fseminf(@myfun,x0,ntheta,@myinfcon)

where myinfcon is a MATLAB function such as
function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)

% Initial sampling interval

if isnan(S(1,1)),

 S = ...% S has ntheta rows and 2 columns

end

w1 = ...% Compute sample set

w2 = ...% Compute sample set

...

wntheta = ... % Compute sample set

K1 = ... % 1st semi-infinite constraint at x and w

K2 = ... % 2nd semi-infinite constraint at x and w

...

Kntheta = ...% Last semi-infinite constraint at x and w

c = ... % Compute nonlinear inequalities at x

ceq = ... % Compute the nonlinear equalities at x

S is a recommended sampling interval, which might or might not be used. Return
[] for c and ceq if no such constraints exist.

The vectors or matrices K1, K2, ..., Kntheta contain the semi-infinite
constraints evaluated for a sampled set of values for the independent variables
w1, w2, ..., wntheta, respectively. The two-column matrix, S, contains a
recommended sampling interval for values of w1, w2, ..., wntheta, which
are used to evaluate K1, K2, ..., Kntheta. The ith row of S contains the
recommended sampling interval for evaluating Ki. When Ki is a vector, use only
S(i,1) (the second column can be all zeros). When Ki is a matrix, S(i,2) is
used for the sampling of the rows in Ki, S(i,1) is used for the sampling interval
of the columns of Ki (see “Two-Dimensional Semi-Infinite Constraint” on page
6-96). On the first iteration S is NaN, so that some initial sampling interval must
be determined by seminfcon.

Note Because Optimization Toolbox functions only accept inputs of type double,
user-supplied objective and nonlinear constraint functions must return outputs of
type double.

 fseminf

14-111

“Passing Extra Parameters” on page 2-50 explains how to parameterize
seminfcon, if necessary. “Example of Creating Sampling Points” on page 6-42
contains an example of both one- and two-dimensional sampling points.
objective Objective function
x0 Initial point for x
ntheta Number of semi-infinite constraints
seminfcon Semi-infinite constraint function
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
solver 'fseminf'

problem

options Options created with optimoptions

Output Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments returned
by fseminf. This section provides function-specific details for exitflag, lambda, and
output:

Integer identifying the reason the algorithm terminated. The following
lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 Function converged to a solution x.
4 Magnitude of the search direction was less than the

specified tolerance and constraint violation was less
than options.TolCon.

exitflag

5 Magnitude of directional derivative was less than
the specified tolerance and constraint violation was
less than options.TolCon.

14 Functions — Alphabetical List

14-112

0 Number of iterations exceeded options.MaxIter
or number of function evaluations exceeded
options.MaxFunEvals.

-1 Algorithm was terminated by the output function.
-2 No feasible point was found.
Structure containing the Lagrange multipliers at the solution x (separated
by constraint type). The fields of the structure are
lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities
ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities
Structure containing information about the optimization. The fields of the
structure are
iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of line search step relative to search direction
stepsize Final displacement in x
algorithm Optimization algorithm used
constrviolation Maximum of constraint functions
firstorderopt Measure of first-order optimality

output

message Exit message

Options

Optimization options used by fseminf. Use optimoptions to set or change options.
See “Optimization Options Reference” on page 13-7 for detailed information.

DerivativeCheck Compare user-supplied derivatives (gradients
of objective or constraints) to finite-differencing

 fseminf

14-113

derivatives. The choices are 'on' or the default
'off'.

Diagnostics Display diagnostic information about the function to
be minimized or solved. The choices are 'on' or the
default 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page
3-16):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and

gives the default exit message.
• 'iter-detailed' displays output at each

iteration, and gives the technical exit message.
• 'notify' displays output only if the function

does not converge, and gives the default exit
message.

• 'notify-detailed' displays output only if
the function does not converge, and gives the
technical exit message.

• 'final' (default) displays just the final output,
and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.

14 Functions — Alphabetical List

14-114

FinDiffRelStep Scalar or vector step size factor for finite differences.
When you set FinDiffRelStep to a vector v,
forward finite differences steps delta are
delta = v.*sign

′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) =
1. Central finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The
default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate gradients, are
either 'forward' (the default), or 'central'
(centered). 'central' takes twice as many function
evaluations, but should be more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. So, for
example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point
outside bounds.

FunValCheck Check whether objective function and constraints
values are valid. 'on' displays an error when the
objective function or constraints return a value that
is complex, Inf, or NaN. The default 'off' displays
no error.

GradObj Gradient for the objective function defined by the
user. See the preceding description of fun to see how
to define the gradient in fun. Set to 'on' to have
fseminf use a user-defined gradient of the objective
function. The default 'off' causes fseminf to
estimate gradients using finite differences.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is
100*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-61 and “Iterations and
Function Counts” on page 3-10.

 fseminf

14-115

MaxIter Maximum number of iterations allowed, a positive
integer. The default is 400. See “Tolerances and
Stopping Criteria” on page 2-61 and “Iterations and
Function Counts” on page 3-10.

MaxSQPIter Maximum number of SQP iterations
allowed, a positive integer. The default
is 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds).

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either
as a function handle or as a cell array of function
handles. The default is none ([]). See “Output
Function” on page 13-20.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots or
write your own. Pass a function handle or a cell array
of function handles. The default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.
• @optimplotconstrviolation plots the

maximum constraint violation.
• @optimplotstepsize plots the step size.
• @optimplotfirstorderopt plots the first-order

optimality measure.

For information on writing a custom plot function,
see “Plot Functions” on page 13-29.

RelLineSrchBnd Relative bound (a real nonnegative scalar value)
on the line search step length such that the total
displacement in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option provides
control over the magnitude of the displacements
in x for cases in which the solver takes steps that
fseminf considers too large. The default is no
bounds ([]).

14 Functions — Alphabetical List

14-116

RelLineSrchBndDuration Number of iterations for which the bound specified in
RelLineSrchBnd should be active (default is 1)

TolCon Termination tolerance on the constraint violation, a
positive scalar. The default is 1e-6. See “Tolerances
and Stopping Criteria” on page 2-61.

TolConSQP Termination tolerance on inner iteration SQP
constraint violation, a positive scalar. The default is
1e-6.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-4. See “Tolerances
and Stopping Criteria” on page 2-61.

TolX Termination tolerance on x, a positive scalar. The
default value is 1e-4. See “Tolerances and Stopping
Criteria” on page 2-61.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value is
ones(numberofvariables,1). fseminf uses
TypicalX for scaling finite differences for gradient
estimation.

Notes

The optimization routine fseminf might vary the recommended sampling interval, S,
set in seminfcon, during the computation because values other than the recommended
interval might be more appropriate for efficiency or robustness. Also, the finite region
wi, over which Ki(x,wi) is calculated, is allowed to vary during the optimization, provided
that it does not result in significant changes in the number of local minima in Ki(x,wi).

Examples

This example minimizes the function
(x – 1)2,

subject to the constraints

 fseminf

14-117

0 ≤ x ≤ 2
g(x, t) = (x – 1/2) – (t – 1/2)2 ≤ 0 for all 0 ≤ t ≤ 1.

The unconstrained objective function is minimized at x = 1. However, the constraint,
g(x, t) ≤ 0 for all 0 ≤ t ≤ 1,
implies x ≤ 1/2. You can see this by noticing that (t – 1/2)2 ≥ 0, so
maxt g(x, t) = (x– 1/2).
Therefore
maxt g(x, t) ≤ 0 when x ≤ 1/2.

To solve this problem using fseminf:

1 Write the objective function as an anonymous function:

objfun = @(x)(x-1)^2;

2 Write the semi-infinite constraint function, which includes the nonlinear constraints
([] in this case), initial sampling interval for t (0 to 1 in steps of 0.01 in this case),
and the semi-infinite constraint function g(x, t):

function [c, ceq, K1, s] = seminfcon(x,s)

% No finite nonlinear inequality and equality constraints

c = [];

ceq = [];

% Sample set

if isnan(s)

 % Initial sampling interval

 s = [0.01 0];

end

t = 0:s(1):1;

% Evaluate the semi-infinite constraint

K1 = (x - 0.5) - (t - 0.5).^2;

3 Call fseminf with initial point 0.2, and view the result:

x = fseminf(objfun,0.2,1,@seminfcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the

default value of the function tolerance, and constraints

14 Functions — Alphabetical List

14-118

are satisfied to within the default value of the

constraint tolerance.

Active inequalities (to within options.TolCon = 1e-006):

 lower upper ineqlin ineqnonlin

 1

x =

 0.5000

Limitations

The function to be minimized, the constraints, and semi-infinite constraints, must be
continuous functions of x and w. fseminf might only give local solutions.

When the problem is not feasible, fseminf attempts to minimize the maximum
constraint value.

More About

Algorithms

fseminf uses cubic and quadratic interpolation techniques to estimate peak values
in the semi-infinite constraints. The peak values are used to form a set of constraints
that are supplied to an SQP method as in the fmincon function. When the number of
constraints changes, Lagrange multipliers are reallocated to the new set of constraints.

The recommended sampling interval calculation uses the difference between the
interpolated peak values and peak values appearing in the data set to estimate whether
the function needs to take more or fewer points. The function also evaluates the
effectiveness of the interpolation by extrapolating the curve and comparing it to other
points in the curve. The recommended sampling interval is decreased when the peak
values are close to constraint boundaries, i.e., zero.

For more details on the algorithm used and the types of procedures displayed under the
Procedures heading when the Display option is set to 'iter' with optimoptions,
see also “SQP Implementation” on page 6-29. For more details on the fseminf
algorithm, see “fseminf Problem Formulation and Algorithm” on page 6-41.
• “Create Function Handle”

 fseminf

14-119

• “fseminf Problem Formulation and Algorithm” on page 6-41
• “Constrained Optimization”

See Also
fmincon | optimoptions | optimtool

14 Functions — Alphabetical List

14-120

fsolve

Solve system of nonlinear equations

Nonlinear system solver

Solves a problem specified by
F(x) = 0

for x, where F(x) is a function that returns a vector value.

x is a vector or a matrix; see “Matrix Arguments” on page 2-30.

Syntax

x = fsolve(fun,x0)

x = fsolve(fun,x0,options)

x = fsolve(problem)

[x,fval] = fsolve(___)

[x,fval,exitflag,output] = fsolve(___)

[x,fval,exitflag,output,jacobian] = fsolve(___)

Description

x = fsolve(fun,x0) starts at x0 and tries to solve the equations fun(x) = 0, an
array of zeros.

x = fsolve(fun,x0,options) solves the equations with the optimization options
specified in options. Use optimoptions to set these options.

x = fsolve(problem) solves problem, where problem is a structure described in
“Input Arguments” on page 14-129. Create the problem structure by exporting a
problem from Optimization app, as described in “Exporting Your Work” on page 5-11.

[x,fval] = fsolve(___), for any syntax, returns the value of the objective function
fun at the solution x.

 fsolve

14-121

[x,fval,exitflag,output] = fsolve(___) additionally returns a value
exitflag that describes the exit condition of fsolve, and a structure output with
information about the optimization process.

[x,fval,exitflag,output,jacobian] = fsolve(___) returns the Jacobian of
fun at the solution x.

Examples

Solution of 2-D Nonlinear System

This example shows how to solve two nonlinear equations in two variables. The
equations are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

% Copyright 2015 The MathWorks, Inc.

function F = root2d(x)

F(1) = exp(-exp(-x(1)+x(2))) - x(2)*(1+x(1)^2);

F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Solve the system of equations starting at the point [0,0].

fun = @root2d;

14 Functions — Alphabetical List

14-122

x0 = [0,0];

x = fsolve(fun,x0)

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

x =

 0.3931 0.3366

Solution with Nondefault Options

Examine the solution process for a nonlinear system.

Set options to have no display and a plot function that displays the first-order optimality,
which should converge to 0 as the algorithm iterates.

options = optimoptions('fsolve','Display','none','PlotFcns',@optimplotfirstorderopt);

The equations in the nonlinear system are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

 fsolve

14-123

% Copyright 2015 The MathWorks, Inc.

function F = root2d(x)

F(1) = exp(-exp(-x(1)+x(2))) - x(2)*(1+x(1)^2);

F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Solve the nonlinear system starting from the point [0,0] and observe the solution
process.

fun = @root2d;

x0 = [0,0];

x = fsolve(fun,x0,options)

x =

 0.3931 0.3366

14 Functions — Alphabetical List

14-124

Solve a Problem Structure

Create a problem structure for fsolve and solve the problem.

Solve the same problem as in “Solution with Nondefault Options”, but formulate the
problem using a problem structure.

Set options for the problem to have no display and a plot function that displays the first-
order optimality, which should converge to 0 as the algorithm iterates.

problem.options = optimoptions('fsolve','Display','none','PlotFcns',@optimplotfirstorderopt);

The equations in the nonlinear system are

 fsolve

14-125

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

% Copyright 2015 The MathWorks, Inc.

function F = root2d(x)

F(1) = exp(-exp(-x(1)+x(2))) - x(2)*(1+x(1)^2);

F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Create the remaining fields in the problem structure.

problem.objective = @root2d;

problem.x0 = [0,0];

problem.solver = 'fsolve';

Solve the problem.

x = fsolve(problem)

x =

 0.3931 0.3366

14 Functions — Alphabetical List

14-126

Solution Process of Nonlinear System

This example returns the iterative display showing the solution process for the system of
two equations and two unknowns

2

2

1 2

1 2

1

2

x x e

x x e

x

x

- =

- + =

-

-
.

Rewrite the equations in the form F(x) = 0:

 fsolve

14-127

2 0

2 0

1 2

1 2

1

2

x x e

x x e

x

x

- - =

- + - =

-

-
.

Start your search for a solution at x0 = [-5 -5].

First, write a file that computes F, the values of the equations at x.

function F = myfun(x)

F = [2*x(1) - x(2) - exp(-x(1));

 -x(1) + 2*x(2) - exp(-x(2))];

Save this function file as myfun.m on your MATLAB path.

Set up the initial point. Set options to return iterative display.

x0 = [-5;-5];

options = optimoptions('fsolve','Display','iter');

Call fsolve.

[x,fval] = fsolve(@myfun,x0,options)

 Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

 0 3 23535.6 2.29e+004 1

 1 6 6001.72 1 5.75e+003 1

 2 9 1573.51 1 1.47e+003 1

 3 12 427.226 1 388 1

 4 15 119.763 1 107 1

 5 18 33.5206 1 30.8 1

 6 21 8.35208 1 9.05 1

 7 24 1.21394 1 2.26 1

 8 27 0.016329 0.759511 0.206 2.5

 9 30 3.51575e-006 0.111927 0.00294 2.5

 10 33 1.64763e-013 0.00169132 6.36e-007 2.5

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

x =

 0.5671

14 Functions — Alphabetical List

14-128

 0.5671

fval =

 1.0e-006 *

 -0.4059

 -0.4059

Examine Matrix Equation Solution

Find a matrix X that satisfies

X X X* * ,=
È

Î
Í

˘

˚
˙

1 2

3 4

starting at the point x= [1,1;1,1]. Examine the fsolve outputs to see the solution
quality and process.

Create an anonymous function that calculates the matrix equation.

fun = @(x)x*x*x - [1,2;3,4];

Set options to turn off the display. Set the initial point x0.

options = optimoptions('fsolve','Display','off');

x0 = ones(2);

Call fsolve and obtain information about the solution process.

[x,fval,exitflag,output] = fsolve(fun,x0,options)

x =

 -0.1291 0.8602

 1.2903 1.1612

fval =

 1.0e-09 *

 -0.1621 0.0780

 0.1167 -0.0465

exitflag =

 fsolve

14-129

 1

output =

 iterations: 6

 funcCount: 35

 algorithm: 'trust-region-dogleg'

 firstorderopt: 2.4488e-10

 message: 'Equation solved.

fsolve completed because the vector of function...'

The exit flag value 1 indicates that the solution is reliable. To verify this manually,
calculate the residual (sum of squares of fval) to see how close it is to zero.

sum(sum(Fval.*Fval))

ans =

 4.8133e-20

This small residual confirms that x is a solution.

fsolve performed 35 function evaluations to find the solution, as you can see in the
output structure.

output.funcCount

ans =

 35

• “Nonlinear Equations with Analytic Jacobian” on page 11-9
• “Nonlinear Equations with Finite-Difference Jacobian” on page 11-12
• “Nonlinear Equations with Jacobian” on page 11-14
• “Nonlinear Equations with Jacobian Sparsity Pattern” on page 11-17
• “Nonlinear Systems with Constraints” on page 11-20

Input Arguments
fun — Nonlinear equations to solve
function handle | function name

14 Functions — Alphabetical List

14-130

Nonlinear equations to solve, specified as a function handle or function name. fun
is a function that accepts a vector x and returns a vector F, the nonlinear equations
evaluated at x. The equations to solve are F = 0 for all components of F. The function fun
can be specified as a function handle for a file

x = fsolve(@myfun,x0)

where myfun is a MATLAB function such as
function F = myfun(x)

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fsolve(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a vector using
linear indexing.

If the Jacobian can also be computed and the Jacobian option is 'on', set by

options = optimoptions('fsolve','Jacobian','on')

the function fun must return, in a second output argument, the Jacobian value J, a
matrix, at x.

If fun returns a vector (matrix) of m components and x has length n, where n is the
length of x0, the Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative of
F(i) with respect to x(j). (The Jacobian J is the transpose of the gradient of F.)

Example: fun = @(x)x*x*x-[1,2;3,4]

Data Types: char | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. fsolve uses the number of elements
in and size of x0 to determine the number and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

options — Optimization options
output of optimoptions | structure as optimset returns

 fsolve

14-131

Optimization options, specified as the output of optimoptions or a structure as
optimset returns.

Some options apply to all algorithms, and others are relevant for particular algorithms.
See “Optimization Options Reference” on page 13-7 for detailed information.

All Algorithms
Algorithm Choose between 'trust-region-dogleg' (default),

'trust-region-reflective', and 'levenberg-
marquardt'. Set the initial Levenberg-Marquardt parameter
λ by setting Algorithm to a cell array such as {'levenberg-
marquardt',.005}. The default λ = 0.01.

The Algorithm option specifies a preference for which
algorithm to use. It is only a preference because for the trust-
region-reflective algorithm, the nonlinear system of equations
cannot be underdetermined; that is, the number of equations
(the number of elements of F returned by fun) must be at
least as many as the length of x. Similarly, for the trust-
region-dogleg algorithm, the number of equations must be
the same as the length of x. fsolve uses the Levenberg-
Marquardt algorithm when the selected algorithm is
unavailable. For more information on choosing the algorithm,
see “Choosing the Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradients of objective or
constraints) to finite-differencing derivatives. The choices are
'on' or the default 'off'.

Diagnostics Display diagnostic information about the function to be
minimized or solved. The choices are 'on' or the default
'off'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a
positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a
positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-16):

• 'off' or 'none' displays no output.

14 Functions — Alphabetical List

14-132

• 'iter' displays output at each iteration, and gives the
default exit message.

• 'iter-detailed' displays output at each iteration, and
gives the technical exit message.

• 'final' (default) displays just the final output, and gives
the default exit message.

• 'final-detailed' displays just the final output, and
gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor for finite differences. When
you set FinDiffRelStep to a vector v, forward finite
differences steps delta are
delta = v.*sign′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) = 1. Central
finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The default is
sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

FinDiffType Finite differences, used to estimate gradients, are either
'forward' (default), or 'central' (centered). 'central'
takes twice as many function evaluations, but should be more
accurate.

The algorithm is careful to obey bounds when estimating
both types of finite differences. So, for example, it could
take a backward, rather than a forward, difference to avoid
evaluating at a point outside bounds.

FunValCheck Check whether objective function values are valid. 'on'
displays an error when the objective function returns a value
that is complex, Inf, or NaN. The default, 'off', displays no
error.

Jacobian If 'on', fsolve uses a user-defined Jacobian (defined in fun),
or Jacobian information (when using JacobMult), for the
objective function. If 'off' (default), fsolve approximates
the Jacobian using finite differences.

 fsolve

14-133

MaxFunEvals Maximum number of function evaluations allowed, a
positive integer. The default is 100*numberOfVariables.
See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer.
The default is 400. See “Tolerances and Stopping Criteria” on
page 2-61 and “Iterations and Function Counts” on page 3-10.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Function” on page 13-20.

PlotFcns Plots various measures of progress while the algorithm
executes. Select from predefined plots or write your own. Pass
a function handle or a cell array of function handles. The
default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.
• @optimplotstepsize plots the step size.
• @optimplotfirstorderopt plots the first-order

optimality measure.

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolFun Termination tolerance on the function value, a positive scalar.
The default is 1e-6. See “Tolerances and Stopping Criteria”
on page 2-61.

TolX Termination tolerance on x, a positive scalar. The default is
1e-6. See “Tolerances and Stopping Criteria” on page 2-61.

14 Functions — Alphabetical List

14-134

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point. The
default value is ones(numberofvariables,1). fsolve
uses TypicalX for scaling finite differences for gradient
estimation.

The trust-region-dogleg algorithm uses TypicalX as the
diagonal terms of a scaling matrix.

Trust-Region-Reflective Algorithm
JacobMult

 fsolve

14-135

 Function handle for Jacobian multiply function. For large-
scale structured problems, this function computes the
Jacobian matrix product J*Y, J'*Y, or J'*(J*Y) without
actually forming J. The function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains a matrix used to compute J*Y (or J'*Y,
or J'*(J*Y)). The first argument Jinfo must be the same as
the second argument returned by the objective function fun,
for example, in

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. flag determines which product to
compute:

• If flag == 0, W = J'*(J*Y).
• If flag > 0, W = J*Y.
• If flag < 0, W = J'*Y.

In each case, J is not formed explicitly. fsolve uses Jinfo to
compute the preconditioner. See “Passing Extra Parameters”
on page 2-50 for information on how to supply values for any
additional parameters jmfun needs.

Note 'Jacobian' must be set to 'on' for fsolve to pass
Jinfo from fun to jmfun.

See “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-75 for a similar example.

14 Functions — Alphabetical List

14-136

JacobPattern Sparsity pattern of the Jacobian for finite differencing. Set
JacobPattern(i,j) = 1 when fun(i) depends on x(j).
Otherwise, set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have ∂fun(i)/
∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to compute the
Jacobian matrix J in fun, though you can determine (say,
by inspection) when fun(i) depends on x(j). fsolve can
approximate J via sparse finite differences when you give
JacobPattern.

In the worst case, if the structure is unknown, do not set
JacobPattern. The default behavior is as if JacobPattern
is a dense matrix of ones. Then fsolve computes a full
finite-difference approximation in each iteration. This can be
very expensive for large problems, so it is usually better to
determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate
gradient) iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more
information, see “Equation Solving Algorithms” on page 11-2.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative
integer. The default PrecondBandWidth is Inf,
which means a direct factorization (Cholesky) is used
rather than the conjugate gradients (CG). The direct
factorization is computationally more expensive than CG,
but produces a better quality step towards the solution.
Set PrecondBandWidth to 0 for diagonal preconditioning
(upper bandwidth of 0). For some problems, an intermediate
bandwidth reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration, a positive scalar.
The default is 0.1.

Levenberg-Marquardt Algorithm
InitDamping Initial value of the Levenberg-Marquardt parameter, a

positive scalar. Default is 1e-2. For details, see “Levenberg-
Marquardt Method” on page 10-7.

 fsolve

14-137

ScaleProblem 'Jacobian' can sometimes improve the convergence of a
poorly scaled problem. The default is 'none'.

Example: options = optimoptions('fsolve','Jacobian','on')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry

objective Objective function
x0 Initial point for x
solver 'fsolve'

options Options created with optimoptions

The simplest way of obtaining a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments

x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size
of x0. Typically, x is a local solution to the problem when exitflag is positive. For
information on the quality of the solution, see “When the Solver Succeeds” on page 4-22.

fval — Objective function value at the solution
real vector

Objective function value at the solution, returned as a real vector. Generally,
fval = fun(x).

exitflag — Reason fsolve stopped
integer

14 Functions — Alphabetical List

14-138

Reason fsolve stopped, returned as an integer.

1 Function converged to a solution x.
2 Change in x was smaller than the specified tolerance.
3 Change in the residual was smaller than the specified

tolerance.
4 Magnitude of search direction was smaller than the

specified tolerance.
0 Number of iterations exceeded options.MaxIter

or number of function evaluations exceeded
options.MaxFunEvals.

-1 Output function terminated the algorithm.
-2 Algorithm appears to be converging to a point that is not

a root.
-3 Trust region radius became too small (trust-region-

dogleg algorithm).
-4 Line search cannot sufficiently decrease the residual

along the current search direction.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations ('trust-region-

reflective' algorithm only)
stepsize Final displacement in x (not in 'trust-region-

dogleg')
firstorderopt Measure of first-order optimality
message Exit message

jacobian — Jacobian at the solution
real matrix

 fsolve

14-139

Jacobian at the solution, returned as a real matrix. jacobian(i,j) is the partial
derivative of fun(i) with respect to x(j) at the solution x.

Limitations
• The function to be solved must be continuous.
• When successful, fsolve only gives one root.
• The default trust-region dogleg method can only be used when the system of

equations is square, i.e., the number of equations equals the number of unknowns.
For the Levenberg-Marquardt method, the system of equations need not be square.

• The preconditioner computation used in the preconditioned conjugate gradient part
of the trust-region-reflective algorithm forms JTJ (where J is the Jacobian matrix)
before computing the preconditioner; therefore, a row of J with many nonzeros, which
results in a nearly dense product JTJ, might lead to a costly solution process for large
problems.

More About

Algorithms

The Levenberg-Marquardt and trust-region-reflective methods are based on the
nonlinear least-squares algorithms also used in lsqnonlin. Use one of these methods if
the system may not have a zero. The algorithm still returns a point where the residual is
small. However, if the Jacobian of the system is singular, the algorithm might converge
to a point that is not a solution of the system of equations (see “Limitations” on page
14-139).

• By default fsolve chooses the trust-region dogleg algorithm. The algorithm is a
variant of the Powell dogleg method described in [8]. It is similar in nature to the
algorithm implemented in [7]. See “Trust-Region Dogleg Method” on page 11-5.

• The trust-region-reflective algorithm is a subspace trust-region method and is based
on the interior-reflective Newton method described in [1] and [2]. Each iteration
involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See “Trust-Region Reflective fsolve
Algorithm” on page 11-2.

• The Levenberg-Marquardt method is described in references [4], [5], and [6]. See
“Levenberg-Marquardt Method” on page 11-7.

14 Functions — Alphabetical List

14-140

• “Optimization Problem Setup”
• “Equation Solving Algorithms” on page 11-2

References

[1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds,” Mathematical
Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J. E. Jr., “Nonlinear Least-Squares,” State of the Art in Numerical Analysis,
ed. D. Jacobs, Academic Press, pp. 269-312.

[4] Levenberg, K., “A Method for the Solution of Certain Problems in Least-Squares,”
Quarterly Applied Mathematics 2, pp. 164-168, 1944.

[5] Marquardt, D., “An Algorithm for Least-squares Estimation of Nonlinear
Parameters,” SIAM Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963.

[6] Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation and Theory,”
Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630,
Springer Verlag, pp. 105-116, 1977.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK 1, Argonne
National Laboratory, Rept. ANL-80-74, 1980.

[8] Powell, M. J. D., “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic
Equations,” Numerical Methods for Nonlinear Algebraic Equations, P.
Rabinowitz, ed., Ch.7, 1970.

See Also
fzero | lsqcurvefit | lsqnonlin | optimoptions

Introduced before R2006a

 fzero

14-141

fzero
Root of nonlinear function

Syntax

x = fzero(fun,x0)

x = fzero(fun,x0,options)

x = fzero(problem)

[x,fval,exitflag,output] = fzero(___)

Description

x = fzero(fun,x0) tries to find a point x where fun(x) = 0. This solution is where
fun(x) changes sign—fzero cannot find a root of a function such as x^2.

x = fzero(fun,x0,options) uses options to modify the solution process.

x = fzero(problem) solves a root-finding problem specified by problem.

[x,fval,exitflag,output] = fzero(___) returns fun(x) in the fval output,
exitflag encoding the reason fzero stopped, and an output structure containing
information on the solution process.

Examples

Root Starting From One Point

Calculate by finding the zero of the sine function near 3.

fun = @sin; % function

x0 = 3; % initial point

x = fzero(fun,x0)

14 Functions — Alphabetical List

14-142

x =

 3.1416

Root Starting From an Interval

Find the zero of cosine between 1 and 2.

fun = @cos; % function

x0 = [1 2]; % initial interval

x = fzero(fun,x0)

x =

 1.5708

Note that cos(1) and cos(2) differ in sign.

Root of a Function Defined by a File

Find a zero of the function f(x) = x3 – 2x – 5.

First, write a file called f.m.

function y = f(x)

y = x.^3-2*x-5;

Save f.m on your MATLAB path.

Find the zero of f(x) near 2.

fun = @f; % function

x0 = 2; % initial point

z = fzero(fun,x0)

z =

 2.0946

Since f(x) is a polynomial, you can find the same real zero, and a complex conjugate
pair of zeros, using the roots command.

 fzero

14-143

roots([1 0 -2 -5])

 ans =

 2.0946

 -1.0473 + 1.1359i

 -1.0473 - 1.1359i

Root of Function with Extra Parameter

Find the root of a function that has an extra parameter.

myfun = @(x,c) cos(c*x); % parameterized function

c = 2; % parameter

fun = @(x) myfun(x,c); % function of x alone

x = fzero(fun,0.1)

x =

 0.7854

Nondefault Options

Plot the solution process by setting some plot functions.

Define the function and initial point.

fun = @(x)sin(cosh(x));

x0 = 1;

Examine the solution process by setting options that include plot functions.

options = optimset('PlotFcns',{@optimplotx,@optimplotfval});

Run fzero including options.

x = fzero(fun,x0,options)

x =

 1.8115

14 Functions — Alphabetical List

14-144

Solve Exported Problem

Solve a problem that is defined by an export from Optimization app.

Define a problem in Optimization app. Enter optimtool('fzero'), and fill in the
problem as pictured.

Note: The Optimization app warns that it will be removed in a future release.

 fzero

14-145

Select File > Export to Workspace, and export the problem as pictured to a
variable named problem.

Enter the following at the command line.

x = fzero(problem)

x =

 1.8115

More Information from Solution

Find the point where exp(-exp(-x)) = x, and display information about the solution
process.

14 Functions — Alphabetical List

14-146

fun = @(x) exp(-exp(-x)) - x; % function

x0 = [0,1]; % initial interval

options = optimset('Display','iter'); % show iterations

[x,fval,exitflag,output] = fzero(fun,x0,options)

 Func-count x f(x) Procedure

 2 1 -0.307799 initial

 3 0.544459 0.0153522 interpolation

 4 0.566101 0.00070708 interpolation

 5 0.567143 -1.40255e-08 interpolation

 6 0.567143 1.50013e-12 interpolation

 7 0.567143 0 interpolation

Zero found in the interval [0, 1]

x =

 0.5671

fval =

 0

exitflag =

 1

output =

 intervaliterations: 0

 iterations: 5

 funcCount: 7

 algorithm: 'bisection, interpolation'

 message: 'Zero found in the interval [0, 1]'

fval = 0 means fun(x) = 0, as desired.

• “Roots of Scalar Functions”

 fzero

14-147

Input Arguments

fun — Function to solve
function handle

Function to solve, specified as a handle to a scalar-valued function. fun accepts a scalar x
and returns a scalar fun(x).

fzero solves fun(x) = 0. To solve an equation fun(x) = c(x), instead solve
fun2(x) = fun(x) - c(x) = 0.

To include extra parameters in your function, see the example “Root of Function with
Extra Parameter” on page 14-143 and the section “Passing Extra Parameters” on page
2-50.
Example: @sin

Example: @myFunction

Example: @(x)(x-a)^5 - 3*x + a - 1

Data Types: function_handle

x0 — Initial value
scalar | 2-element vector

Initial value, specified as a real scalar or a 2-element real vector.

• Scalar — fzero begins at x0 and tries to locate a point x1 where fun(x1) has the
opposite sign of fun(x0). Then fzero iteratively shrinks the interval where fun
changes sign to reach a solution.

• 2-element vector — fzero checks that fun(x0(1)) and fun(x0(2)) have opposite
signs, and errors if they do not. It then iteratively shrinks the interval where fun
changes sign to reach a solution. An interval x0 must be finite; it cannot contain
±Inf.

Tip Calling fzero with an interval (x0 with two elements) is often faster than calling it
with a scalar x0.

Example: 3
Example: [2,17]

14 Functions — Alphabetical List

14-148

Data Types: double

options — Options for solution process
structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options
structure using optimset. fzero uses these options structure fields.

Display Level of display (see “Iterative Display” on page 3-16):

• 'off' displays no output.
• 'iter' displays output at each iteration.
• 'final' displays just the final output.
• 'notify' (default) displays output only if the function does not

converge.
FunValCheck Check whether objective function values are valid.

• 'on' displays an error when the objective function returns a
value that is complex, Inf, or NaN.

• The default, 'off', displays no error.
OutputFcn Specify one or more user-defined functions that an optimization

function calls at each iteration, either as a function handle or as a
cell array of function handles. The default is none ([]). See “Output
Function” on page 13-20.

PlotFcns Plot various measures of progress while the algorithm executes.
Select from predefined plots or write your own. Pass a function
handle or a cell array of function handles. The default is none ([]).

• @optimplotx plots the current point.
• @optimplotfval plots the function value.

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolX Termination tolerance on x, a positive scalar. The default is eps,
2.2204e–16. See “Tolerances and Stopping Criteria” on page 2-61.

Example: options = optimset('FunValCheck','on')

Data Types: struct

 fzero

14-149

problem — Root-finding problem
structure

Root-finding problem, specified as a structure with all of the following fields.

objective Objective function
x0 Initial point for x, scalar or 2-D vector
solver 'fzero'

options Options structure, typically created using optimset

You can generate problem by exporting from Optimization app. See “Importing and
Exporting Your Work” on page 5-11 or “Solve Exported Problem” on page 14-144.
Data Types: struct

Output Arguments

x — Location of root or sign change
real scalar

Location of root or sign change, returned as a scalar.

fval — Function value at x
real scalar

Function value at x, returned as a scalar.

exitflag — Integer encoding the exit condition
integer

Integer encoding the exit condition, meaning the reason fzero stopped its iterations.

1 Function converged to a solution x.
-1 Algorithm was terminated by the output function or plot function.
-3 NaN or Inf function value was encountered while searching for an

interval containing a sign change.
-4 Complex function value was encountered while searching for an interval

containing a sign change.

14 Functions — Alphabetical List

14-150

-5 Algorithm might have converged to a singular point.
-6 fzero did not detect a sign change.

output — Information about root-finding process
structure

Information about root-finding process, returned as a structure. The fields of the
structure are:

intervaliterations Number of iterations taken to find an interval containing a root
iterations Number of zero-finding iterations
funcCount Number of function evaluations
algorithm 'bisection, interpolation'

message Exit message

More About

Algorithms

The fzero command is a function file. The algorithm, created by T. Dekker, uses a
combination of bisection, secant, and inverse quadratic interpolation methods. An Algol
60 version, with some improvements, is given in [1]. A Fortran version, upon which
fzero is based, is in [2].
• “Passing Extra Parameters” on page 2-50

References

[1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, 1976.

See Also
fminbnd | fsolve | optimset | optimtool | roots

Introduced before R2006a

 fzmult

14-151

fzmult
Multiplication with fundamental nullspace basis

Syntax

W = fzmult(A,V)

W = fzmult(A,V,'transpose')

[W,L,U,pcol,P] = fzmult(A,V)

W = fzmult(A,V,transpose,L,U,pcol,P)

Description

W = fzmult(A,V) computes the product W of matrix Z with matrix V, that is, W = Z*V,
where Z is a fundamental basis for the nullspace of matrix A. A must be a sparse m-by-n
matrix where m < n, rank(A) = m, and rank(A(1:m,1:m)) = m. V must be p-by-q,
where p = n-m. If V is sparse W is sparse, else W is full.

W = fzmult(A,V,'transpose') computes the product of the transpose of the
fundamental basis times V, that is, W = Z'*V. V must be p-by-q, where q = n-m.
fzmult(A,V) is the same as fzmult(A,V,[]).

[W,L,U,pcol,P] = fzmult(A,V) returns the sparse LU-factorization of matrix
A(1:m,1:m), that is, A1 = A(1:m,1:m) and P*A1(:,pcol) = L*U.

W = fzmult(A,V,transpose,L,U,pcol,P) uses the precomputed sparse
LU factorization of matrix A(1:m,1:m), that is, A1 = A(1:m,1:m) and
P*A1(:,pcol) = L*U. transpose is either 'transpose' or [].

The nullspace basis matrix Z is not formed explicitly. An implicit representation is used
based on the sparse LU factorization of A(1:m,1:m).

14 Functions — Alphabetical List

14-152

gangstr
Zero out “small” entries subject to structural rank

Syntax

A = gangstr(M,tol)

Description

A = gangstr(M,tol) creates matrix A of full structural rank such that A is M except
that elements of M that are relatively “small,” based on tol, are zeros in A. The algorithm
decreases tol, if needed, until sprank(A) = sprank(M). M must have at least as many
columns as rows. Default tol is 1e-2.

gangstr identifies elements of M that are relatively less than tol by first normalizing
all the rows of M to have norm 1. It then examines nonzeros in M in a columnwise fashion,
replacing with zeros those elements with values of magnitude less than tol times the
maximum absolute value in that column.

See Also
sprank | spy

 intlinprog

14-153

intlinprog

Mixed-integer linear programming (MILP)

Mixed-integer linear programming solver.

Finds the minimum of a problem specified by

min

()

x

Tf x

x

A x

Aeq x beq

lb

b
 subject to

intcon are integers

◊

◊ =

£

£ xx ub£

Ï

Ì

Ô
Ô

Ó

Ô
Ô .

f, x, intcon, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

You can specify f, intcon, lb, and ub as vectors or arrays. See “Matrix Arguments” on page
2-30.

Syntax

x = intlinprog(f,intcon,A,b)

x = intlinprog(f,intcon,A,b,Aeq,beq)

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options)

x = intlinprog(problem)

[x,fval,exitflag,output] = intlinprog(___)

Description

x = intlinprog(f,intcon,A,b) solves min f'*x such that the components of x in
intcon are integers, and A*x ≤ b.

x = intlinprog(f,intcon,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq. Set A = [] and b = [] if
no inequalities exist.

14 Functions — Alphabetical List

14-154

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables, x, so that the solution is always in the range
lb ≤ x ≤ ub. Set Aeq = [] and beq = [] if no equalities exist.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options) minimizes using the
optimization options specified in options. Use optimoptions to set these options. Set
lb = [] and ub = [] if no bounds exist.

x = intlinprog(problem) uses a problem structure to encapsulate all solver inputs.
You can import a problem structure from an MPS file using mpsread.

[x,fval,exitflag,output] = intlinprog(___), for any input arguments
described above, returns fval = f'*x, a value exitflag describing the exit condition,
and a structure output containing information about the optimization process.

Examples
Solve an MILP with Linear Inequalities

Solve the problem

min
x

x x

x

x x

x x

8
2

4

14

31 2

2

1 2

1 2

+
+

- -

≥ -

£ -
 subject to

 is an integer

33

202 1 2x x+

Ï

Ì

Ô
Ô

Ó

Ô
Ô £ .

Write the objective function vector and vector of integer variables.

f = [8;1];

intcon = 2;

Convert all inequalities into the form A*x <= b by multiplying “greater than”
inequalities by -1.

A = [-1,-2;

 -4,-1;

 2,1];

b = [14;-33;20];

Call intlinprog.

x = intlinprog(f,intcon,A,b)

 intlinprog

14-155

LP: Optimal objective value is 59.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value;

options.TolGapAbs = 0 (the default value). The intcon variables are integer within tolerance,

options.TolInteger = 1e-05 (the default value).

x =

 6.5000

 7.0000

Solve an MILP with All Types of Constraints

Solve the problem

min
,

x

x x x

x

x x

x x x

x

- - -()
+ +

≥

£
3 2

4

0

71 2 3

3

1 2

1 2 3

1

 subject to

 binary

++ +

Ï

Ì

Ô
Ô

Ó

Ô
Ô =2 122 3x x

Write the objective function vector and vector of integer variables.

f = [-3;-2;-1];

intcon = 3;

Write the linear inequality constraints.

A = [1,1,1];

b = 7;

Write the linear equality constraints.

Aeq = [4,2,1];

beq = 12;

Write the bound constraints.

lb = zeros(3,1);

ub = [Inf;Inf;1]; % Enforces x(3) is binary

Call intlinprog.

14 Functions — Alphabetical List

14-156

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

LP: Optimal objective value is -12.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value;

options.TolGapAbs = 0 (the default value). The intcon variables are integer within tolerance,

options.TolInteger = 1e-05 (the default value).

x =

 0

 5.5000

 1.0000

Solve an MILP with Nondefault Options

Solve the problem

min
,

x

x x x

x

x x

x x x

x

- - -()
+ +

≥

£
3 2

4

0

71 2 3

3

1 2

1 2 3

1

 subject to

 binary

++ +

Ï

Ì

Ô
Ô

Ó

Ô
Ô =2 122 3x x

without showing iterative display.

Specify the solver inputs.

f = [-3;-2;-1];

intcon = 3;

A = [1,1,1];

b = 7;

Aeq = [4,2,1];

beq = 12;

lb = zeros(3,1);

ub = [Inf;Inf;1]; % enforces x(3) is binary

Specify no display.

options = optimoptions('intlinprog','Display','off');

 intlinprog

14-157

Run the solver.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options)

x =

 0

 5.5000

 1.0000

Use a Problem Structure

Solve the problem

min
,

x

x x x

x

x x

x x x

x

- - -()
+ +

≥

£
3 2

4

0

71 2 3

3

1 2

1 2 3

1

 subject to

 binary

++ +

Ï

Ì

Ô
Ô

Ó

Ô
Ô =2 122 3x x

using iterative display. Use a problem structure as the intlinprog input.

Specify the solver inputs.

f = [-3;-2;-1];

intcon = 3;

A = [1,1,1];

b = 7;

Aeq = [4,2,1];

beq = 12;

lb = zeros(3,1);

ub = [Inf;Inf;1]; % enforces x(3) is binary

options = optimoptions('intlinprog','Display','off');

Insert the inputs into a problem structure. Include the solver name.

problem = struct('f',f,'intcon',intcon,...

 'Aineq',A,'bineq',b,'Aeq',Aeq,'beq',beq,...

 'lb',lb,'ub',ub,'options',options,...

 'solver','intlinprog');

Run the solver.

x = intlinprog(problem)

x =

14 Functions — Alphabetical List

14-158

 0

 5.5000

 1.0000

Examine the MILP Solution and Process

Call intlinprog with more outputs to see solution details and process.

The goal is to solve the problem

min
,

x

x x x

x

x x

x x x

x

- - -()
+ +

≥

£
3 2

4

0

71 2 3

3

1 2

1 2 3

1

 subject to

 binary

++ +

Ï

Ì

Ô
Ô

Ó

Ô
Ô =2 122 3x x

Specify the solver inputs.

f = [-3;-2;-1];

intcon = 3;

A = [1,1,1];

b = 7;

Aeq = [4,2,1];

beq = 12;

lb = zeros(3,1);

ub = [Inf;Inf;1]; % enforces x(3) is binary

Call intlinprog with all outputs.

[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

LP: Optimal objective value is -12.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value;

options.TolGapAbs = 0 (the default value). The intcon variables are integer within tolerance,

options.TolInteger = 1e-05 (the default value).

x =

 0

 intlinprog

14-159

 5.5000

 1.0000

fval =

 -12.0000

exitflag =

 1

output =

 relativegap: 0

 absolutegap: 0

 numfeaspoints: 1

 numnodes: 0

 constrviolation: 1.7764e-15

 message: 'Optimal solution found.

Intlinprog stopped at the root node because the objective v...'

The output structure shows numnodes is 0. This means intlinprog solved the
problem before branching. This is one indication that the result is reliable. Also, the
absolutegap and relativegap fields are 0. This is another indication that the result
is reliable.

• “Mixed-Integer Linear Programming Basics” on page 8-49
• “Factory, Warehouse, Sales Allocation Model” on page 8-52
• “Travelling Salesman Problem” on page 8-64
• “Solve Sudoku Puzzles Via Integer Programming” on page 8-94
• “Mixed-Integer Quadratic Programming Portfolio Optimization” on page 8-85
• “Optimal Dispatch of Power Generators” on page 8-72

Input Arguments
f — Coefficient vector
real vector

14 Functions — Alphabetical List

14-160

Coefficient vector, specified as a vector of doubles representing the objective function,
f'*x. The notation assumes that f is a column vector, but you are free to use a row
vector.

f can also be an array. Internally, intlinprog converts an array f to the vector f(:).

If you specify f = [], intlinprog tries to find a feasible point without trying to
minimize an objective function.
Example: f = [4;2;-1.7];

Data Types: double

intcon — Vector of integer constraints
vector of integers

Vector of integer constraints, specified as a vector of positive integers. The values in
intcon indicate the components of the decision variable x that are integer-valued.
intcon has values from 1 through numel(f).

intcon can also be an array. Internally, intlinprog converts an array intcon to the
vector intcon(:).

Example: intcon = [1,2,7] means x(1), x(2), and x(7) take only integer values.

Data Types: double

A — Linear inequality constraint matrix
real matrix

Linear inequality constraint matrix, specified as a matrix of doubles. A represents the
linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number
of constraints and N = numel(f). To save memory, A can be sparse.

Example: A = [4,3;2,0;4,-1]; means three linear inequalities (three rows) for two
decision variables (two columns).
Data Types: double

b — Linear inequality constraint vector
real vector

Linear inequality constraint vector, specified as a vector of doubles. b represents the
constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N.

Example: [4,0]

 intlinprog

14-161

Data Types: double

Aeq — Linear equality constraint matrix
[] (default) | real matrix

Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the
linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is
the number of constraints and N = numel(f). To save memory, Aeq can be sparse.

Example: A = [4,3;2,0;4,-1]; means three linear inequalities (three rows) for two
decision variables (two columns).
Data Types: double

beq — Linear equality constraint vector
[] (default) | real vector

Linear equality constraint vector, specified as a vector of doubles. beq represents the
constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-
by-N.

Example: [4,0]

Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds
elementwise in lb ≤ x ≤ ub.

Internally, intlinprog converts an array lb to the vector lb(:).

Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.

Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds
elementwise in lb ≤ x ≤ ub.

Internally, intlinprog converts an array ub to the vector ub(:).

Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.

14 Functions — Alphabetical List

14-162

Data Types: double

options — Options for intlinprog
options created using optimoptions

Options for intlinprog, specified as the output of optimoptions.

Option Description Default

BranchingRuleRule for choosing the component for branching:

• 'maxpscost' — The fractional component with
maximum pseudocost. See “Branch and Bound”
on page 8-42.

• 'mostfractional' — The component whose
fractional part is closest to 1/2.

• 'maxfun' — The fractional component with
maximal corresponding component in the
absolute value of objective vector f.

'maxpscost'

CutGenerationLevel of cut generation (see “Cut Generation” on
page 8-40):

• 'none' — No cuts. Makes CutGenMaxIter
irrelevant.

• 'basic' — Normal cut generation.
• 'intermediate' — Use more cut types.
• 'advanced' — Use most cut types.

'basic'

CutGenMaxIterNumber of passes through all cut generation
methods before entering the branch-and-bound
phase, an integer from 1 through 50. Disable cut
generation by setting the CutGeneration option
to 'none'.

10

Display Level of display (see “Iterative Display” on page
3-16):

• 'off' or 'none' — No iterative display
• 'final' — Show final values only
• 'iter' — Show iterative display

'iter'

 intlinprog

14-163

Option Description Default

Heuristics Algorithm for searching for feasible points (see
“Heuristics for Finding Feasible Solutions” on page
8-41):

• 'none'

• 'rss'

• 'round'

• 'rins'

'rss'

HeuristicsMaxNodesStrictly positive integer that bounds the number of
nodes intlinprog can explore in its branch-and-
bound search for feasible points. See “Heuristics for
Finding Feasible Solutions” on page 8-41.

50

IPPreprocessTypes of integer preprocessing (see “Mixed-Integer
Program Preprocessing” on page 8-40):

• 'none' — Use very few integer preprocessing
steps.

• 'basic' — Use a moderate number of integer
preprocessing steps.

• 'advanced' — Use all available integer
preprocessing steps.

'basic'

LPMaxIter Strictly positive integer, the maximum number of
simplex algorithm iterations per node during the
branch-and-bound process.

3e4

LPPreprocessType of preprocessing for the solution to the
relaxed linear program (see “Linear Program
Preprocessing” on page 8-39):

• 'none' — No preprocessing.
• 'basic' — Use preprocessing.

'basic'

MaxNodes Strictly positive integer that is the maximum
number of nodes intlinprog explores in its
branch-and-bound process.

1e7

14 Functions — Alphabetical List

14-164

Option Description Default

MaxNumFeasPointsStrictly positive integer. intlinprog stops if it
finds MaxNumFeasPoints integer feasible points.

Inf

MaxTime Positive real that is the maximum time in seconds
that intlinprog runs.

7200

NodeSelectionChoose the node to explore next.

• 'simplebestproj' — Best projection. See
“Branch and Bound” on page 8-42.

• 'minobj' — Explore the node with the
minimum objective function.

• 'mininfeas' — Explore the node with the
minimal sum of integer infeasibilities. See
“Branch and Bound” on page 8-42.

'simplebestproj'

ObjectiveCutOffReal greater than -Inf. During the branch-and-
bound calculation, intlinprog discards any node
where the linear programming solution has an
objective value exceeding ObjectiveCutOff.

Inf

OutputFcn Specify one or more functions that an optimization
function calls at events, either as a function handle
or as a cell array of function handles.

• @savemilpsolutions collects the integer-
feasible points in the xIntSol matrix in your
workspace, where each column is one integer
feasible point.

For information on writing a custom output
function, see “intlinprog Output Functions and
Plot Functions” on page 13-30.

[]

 intlinprog

14-165

Option Description Default

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Pass a function handle or a cell
array of function handles.

• @optimplotmilp plots the internally-
calculated upper and lower bounds on the
objective value of the solution.

For information on writing a custom plot function,
see “intlinprog Output Functions and Plot
Functions” on page 13-30.

[]

RelObjThresholdNonnegative real. intlinprog changes the
current feasible solution only when it locates
another with an objective function value that is at
least RelObjThreshold lower: (fold – fnew)/(1 +
fold) > RelObjThreshold.

1e-4

RootLPAlgorithmAlgorithm for solving linear programs:

• 'dual-simplex' — Dual simplex algorithm
• 'primal-simplex' — Primal simplex

algorithm

'dual-simplex'

RootLPMaxIterNonnegative integer that is the maximum number
of simplex algorithm iterations to solve the initial
linear programming problem.

3e4

TolCon Real from 1e-9 through 1e-3 that is the maximum
discrepancy that linear constraints can have
and still be considered satisfied. TolCon is not a
stopping criterion.

1e-4

TolFunLP Nonnegative real where reduced costs must exceed
TolFunLP for a variable to be taken into the basis.

1e-7

14 Functions — Alphabetical List

14-166

Option Description Default

TolGapAbs Nonnegative real. intlinprog stops if the
difference between the internally calculated upper
(U) and lower (L) bounds on the objective function is
less than or equal to TolGapAbs:

U – L <= TolGapAbs.

0

TolGapRel Real from 0 through 1. intlinprog stops if
the relative difference between the internally
calculated upper (U) and lower (L) bounds on
the objective function is less than or equal to
TolGapRel:

(U – L) / (abs(U) + 1) <= TolGapRel.

1e-4

TolInteger Real from 1e-6 through 1e-3, where the
maximum deviation from integer that a component
of the solution x can have and still be considered an
integer. TolInteger is not a stopping criterion.

1e-5

Example: options = optimoptions('intlinprog','MaxTime',120)

problem — Structure encapsulating inputs and options
structure

Structure encapsulating the inputs and options, specified with the following fields.

f Vector representing objective f'*x (required)
intcon Vector indicating variables that take integer values (required)
Aineq Matrix in linear inequality constraints Aineq*x ≤ bineq
bineq Vector in linear inequality constraints Aineq*x ≤ bineq
Aeq Matrix in linear equality constraints Aeq*x = beq
beq Vector in linear equality constraints Aeq*x = beq
lb Vector of lower bounds
ub Vector of upper bounds
solver 'intlinprog' (required)

 intlinprog

14-167

options Options created using optimoptions (required)

You must specify at least these fields in the problem structure. Other fields are optional:

• f

• intcon

• solver

• options

Example: problem.f = [1,2,3];
problem.intcon = [2,3];

problem.options = optimoptions('intlinprog');

problem.Aineq = [-3,-2,-1];

problem.bineq = -20;

problem.lb = [-6.1,-1.2,7.3];

problem.solver = 'intlinprog';

Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a vector that minimizes f'*x subject to all bounds, integer
constraints, and linear constraints.

When a problem is infeasible or unbounded, x is [].

fval — Objective value
real scalar

Objective value, returned as the scalar value f'*x at the solution x.

When a problem is infeasible or unbounded, fval is [].

exitflag — Algorithm stopping condition
integer

14 Functions — Alphabetical List

14-168

Algorithm stopping condition, returned as an integer identifying the reason the
algorithm stopped. The following lists the values of exitflag and the corresponding
reasons intlinprog stopped.

2 intlinprog stopped prematurely. Integer feasible point
found.

1 intlinprog converged to the solution x.
0 intlinprog stopped prematurely. No integer feasible point

found.
-2 No feasible point found.
-3 Root LP problem is unbounded.

The exit message can give more detailed information on the reason intlinprog stopped,
such as exceeding a tolerance.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the
optimization process.

relativegap Relative difference between upper (U) and lower (L)
bounds of the objective function that intlinprog
calculates in its branch-and-bound algorithm.

relativegap = (U - L) / (abs(U) + 1)

If intcon = [], relativegap = [].
absolutegap Difference between upper and lower bounds of the

objective function that intlinprog calculates in
its branch-and-bound algorithm.

If intcon = [], absolutegap = [].
numfeaspoints Number of integer feasible points found.

If intcon = [], numfeaspoints = []. Also,
if the initial relaxed problem is infeasible,
numfeaspoints = [].

 intlinprog

14-169

numnodes Number of nodes in branch-and-bound algorithm.
If the solution was found during preprocessing or
during the initial cuts, numnodes = 0.

If intcon = [], numnodes = [].
constrviolation Constraint violation that is positive for violated

constraints.

constrviolation = max([0; norm(Aeq*x-

beq, inf); (lb-x); (x-ub); (Ai*x-bi)])

message Exit message.

Limitations

• Often, some supposedly integer-valued components of the solution x(intCon) are
not precisely integers. intlinprog deems as integers all solution values within the
TolInteger tolerance of an integer.

To round all supposed integers to be exactly integers, use the round function.

x(intcon) = round(x(intcon));

Caution Rounding solutions can cause the solution to become infeasible. Check
feasibility after rounding:

max(A*x - b) % See if entries are not too positive, so have small infeasibility

max(abs(Aeq*x - beq)) % See if entries are near enough to zero

max(x - ub) % Positive entries are violated bounds

max(lb - x) % Positive entries are violated bounds

• intlinprog does not enforce that solution components be integer-valued when
their absolute values exceed 2.1e9. When your solution has such components,
intlinprog warns you. If you receive this warning, check the solution to see whether
supposedly integer-valued components of the solution are close to integers.

• intlinprog does not allow components of the problem, such as coefficients in f, A,
or ub, to exceed 1e25 in absolute value. If you try to run intlinprog with such a
problem, intlinprog issues an error.

• Currently, you cannot run intlinprog in the “Optimization App” on page 5-2.

14 Functions — Alphabetical List

14-170

More About

MILP

Mixed-integer linear programming definition.

MILP means find the minimum of a problem specified by

min

()

x

Tf x

x

A x

Aeq x beq

lb

b
 subject to

intcon are integers

◊

◊ =

£

£ xx ub£

Ï

Ì

Ô
Ô

Ó

Ô
Ô .

f, x, intcon, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

You can specify f, intcon, lb, and ub as vectors or arrays. See “Matrix Arguments” on page
2-30.

Tips

• To specify binary variables, set the variables to be integers in intcon, and give them
lower bounds of 0 and upper bounds of 1.

• Save memory by specifying sparse linear constraint matrices A and Aeq. However,
you cannot use sparse matrices for b and beq.

• To provide logical indices for integer components, meaning a binary vector with 1
indicating an integer, convert to intcon form using find. For example,

logicalindices = [1,0,0,1,1,0,0];

intcon = find(logicalindices)

intcon =

 1 4 5

• intlinprog replaces bintprog. To update old bintprog code to use intlinprog,
make the following changes:

• Set intcon to 1:numVars, where numVars is the number of variables in your
problem.

• Set lb to zeros(numVars,1).

 intlinprog

14-171

• Set ub to ones(numVars,1).
• Update any relevant options. Use optimoptions to create options for

intlinprog.
• Change your call to bintprog as follows:

[x,fval,exitflag,output] = bintprog(f,A,b,Aeq,Beq,x0,options)

% Change your call to:

[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,Beq,lb,ub,options)

• “Mixed-Integer Linear Programming Algorithms” on page 8-38
• “Tuning Integer Linear Programming” on page 8-46
• “Optimization Problem Setup”

See Also
linprog | mpsread | optimoptions

Introduced in R2014a

14 Functions — Alphabetical List

14-172

linprog
Solve linear programming problems

Linear programming solver

Finds the minimum of a problem specified by

min

,

,

.
x

Tf x

A x b

Aeq x beq

lb x ub

 such that

◊ £

◊ =

£ £

Ï

Ì
Ô

Ó
Ô

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Syntax

x = linprog(f,A,b)

x = linprog(f,A,b,Aeq,beq)

x = linprog(f,A,b,Aeq,beq,lb,ub)

x = linprog(f,A,b,Aeq,beq,lb,ub,x0)

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

x = linprog(problem)

[x,fval] = linprog(___)

[x,fval,exitflag,output] = linprog(___)

[x,fval,exitflag,output,lambda] = linprog(___)

Description

x = linprog(f,A,b) solves min f'*x such that A*x ≤ b.

x = linprog(f,A,b,Aeq,beq) includes equality constraints Aeq*x = beq. Set
A = [] and b = [] if no inequalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on
the design variables, x, so that the solution is always in the range lb ≤ x ≤ ub. Set
Aeq = [] and beq = [] if no equalities exist.

 linprog

14-173

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the output fval is [].

x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.

Note linprog uses x0 for only the 'active-set' algorithm. For all other algorithms,
linprog ignores x0.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the optimization
options specified by options. Use optimoptions to set these options.

x = linprog(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-184.

Create the problem structure by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11. You can import a problem structure
from an MPS file using mpsread.

[x,fval] = linprog(___), for any input arguments, returns the value of the
objective function fun at the solution x: fval = f'*x.

[x,fval,exitflag,output] = linprog(___) additionally returns a value
exitflag that describes the exit condition, and a structure output that contains
information about the optimization process.

[x,fval,exitflag,output,lambda] = linprog(___) additionally returns a
structure lambda whose fields contain the Lagrange multipliers at the solution x.

Examples

Linear Program, Linear Inequality Constraints

Solve a simple linear program defined by linear inequalities.

For this example, use these linear inequality constraints:

14 Functions — Alphabetical List

14-174

A = [1 1

 1 1/4

 1 -1

 -1/4 -1

 -1 -1

 -1 1];

b = [2 1 2 1 -1 2];

Use the objective function .

f = [-1 -1/3];

Solve the linear program.

x = linprog(f,A,b)

Optimization terminated.

x =

 0.6667

 1.3333

Linear Program with Linear Inequalities and Equalities

Solve a simple linear program defined by linear inequalities and linear equalities.

For this example, use these linear inequality constraints:

 linprog

14-175

A = [1 1

 1 1/4

 1 -1

 -1/4 -1

 -1 -1

 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint .

Aeq = [1 1/4];

beq = 1/2;

Use the objective function .

f = [-1 -1/3];

Solve the linear program.

x = linprog(f,A,b,Aeq,beq)

Optimization terminated.

x =

 0.0000

 2.0000

Linear Program with All Constraint Types

Solve a simple linear program with linear inequalities, linear equalities, and bounds.

14 Functions — Alphabetical List

14-176

For this example, use these linear inequality constraints:

A = [1 1

 1 1/4

 1 -1

 -1/4 -1

 -1 -1

 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint .

Aeq = [1 1/4];

beq = 1/2;

Set these bounds:

lb = [-1,-0.5];

ub = [1.5,1.25];

Use the objective function .

f = [-1 -1/3];

Solve the linear program.

 linprog

14-177

x = linprog(f,A,b,Aeq,beq,lb,ub)

Optimization terminated.

x =

 0.1875

 1.2500

Linear Program Using the Dual-Simplex Algorithm

Solve a linear program using the 'dual-simplex' algorithm.

For this example, use these linear inequality constraints:

A = [1 1

 1 1/4

 1 -1

 -1/4 -1

 -1 -1

 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint .

Aeq = [1 1/4];

beq = 1/2;

Set these bounds:

14 Functions — Alphabetical List

14-178

lb = [-1,-0.5];

ub = [1.5,1.25];

Use the objective function .

f = [-1 -1/3];

Set options to use the 'dual-simplex' algorithm.

options = optimoptions('linprog','Algorithm','dual-simplex');

Set the initial point to [], because the dual-simplex algorithm does not accept an
initial point x0.

x0 = [];

Solve the linear program using the 'dual-simplex' algorithm.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

Optimal solution found.

x =

 0.1875

 1.2500

Return the Objective Function Value

Calculate the solution and objective function value for a simple linear program.

The inequality constraints are

 linprog

14-179

A = [1 1

 1 1/4

 1 -1

 -1/4 -1

 -1 -1

 -1 1];

b = [2 1 2 1 -1 2];

The objective function is .

f = [-1 -1/3];

Solve the problem and return the objective function value.

[x,fval] = linprog(f,A,b)

Optimization terminated.

x =

 0.6667

 1.3333

fval =

 -1.1111

Obtain More Output to Examine the Solution Process

Obtain the exit flag and output structure to better understand the solution process and
quality.

14 Functions — Alphabetical List

14-180

For this example, use these linear inequality constraints:

A = [1 1

 1 1/4

 1 -1

 -1/4 -1

 -1 -1

 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint .

Aeq = [1 1/4];

beq = 1/2;

Set these bounds:

lb = [-1,-0.5];

ub = [1.5,1.25];

Use the objective function .

f = [-1 -1/3];

 linprog

14-181

Set options to use the 'dual-simplex' algorithm.

options = optimoptions('linprog','Algorithm','dual-simplex');

Set the initial point to [], because the dual-simplex algorithm does not accept an
initial point x0.

x0 = [];

Solve the linear program and request the function value, exit flag, and output structure.

[x,fval,exitflag,output] = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

Optimal solution found.

x =

 0.1875

 1.2500

fval =

 -0.6042

exitflag =

 1

output =

 iterations: 0

 constrviolation: 0

 message: 'Optimal solution found.'

 algorithm: 'dual-simplex'

 firstorderopt: 0

• fval, the objective function value, is larger than “Return the Objective Function
Value”, because there are more constraints.

• exitflag = 1 indicates that the solution is reliable.

14 Functions — Alphabetical List

14-182

• output.iterations = 0 indicates that linprog found the solution during presolve,
and did not have to iterate at all.

Obtain Solution and Lagrange Multipliers

Solve a simple linear program and examine the solution and the Lagrange multipliers.

Use the objective function

f = [-5; -4; -6];

Use the linear inequality constraints

A = [1 -1 1

 3 2 4

 3 2 0];

b = [20;42;30];

Constrain all variables to be positive:

lb = zeros(3,1);

Set Aeq and beq to [], indicating that there are no linear equality constraints.

Aeq = [];

beq = [];

Call linprog, obtaining the Lagrange multipliers.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb);

Optimization terminated.

 linprog

14-183

Examine the solution and Lagrange multipliers.

x,lambda.ineqlin,lambda.lower

x =

 0.0000

 15.0000

 3.0000

ans =

 0.0000

 1.5000

 0.5000

ans =

 1.0000

 0.0000

 0.0000

lambda.ineqlin is nonzero for the second and third components of x. This indicates
that the second and third linear inequality constraints are satisfied with equalities:

Check that this is true:

A*x

ans =

 -12.0000

 42.0000

 30.0000

14 Functions — Alphabetical List

14-184

lambda.lower is nonzero for the first component of x. This indicates that x(1) is at its
lower bound of 0.

• “Set Up a Linear Program” on page 1-12
• “Typical Linear Programming Problem” on page 8-22
• Maximize Long-Term Investments Using Linear Programming

Input Arguments

f — Objective function
real vector

Objective function, specified as a real vector. linprog attempts to find an x that
minimizes the objective function
f'*x = f(1)*x(1) + ... + f(N)*x(N),

where N is the number of variables in the problem.

Example: f = [1,3,5,-6]

Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is
the number of inequalities, and N is the number of variables (number of elements in x0).
For large problems, pass A as a sparse matrix.

A encodes the M linear inequalities
A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M
elements.

For example, to specify
x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

../examples/maximize-long-term-investments-using-linear-programming.html

 linprog

14-185

A = [1,2;3,4;5,6];

b = [10;20;30];

Example: To specify that the x-components add up to 1 or less, take A = ones(1,N) and
b = 1

Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related
to the A matrix. If you pass b as a row vector, solvers internally convert b to the column
vector b(:). For large problems, pass b as a sparse vector.

b encodes the M linear inequalities
A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, to specify
x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];

b = [10;20;30];

Example: To specify that the x-components sum to 1 or less, take A = ones(1,N) and b
= 1

Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where
Me is the number of equalities, and N is the number of variables (number of elements in
x0). For large problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities
Aeq*x = beq,

14 Functions — Alphabetical List

14-186

where x is the column vector of N variables x(:), and beq is a column vector with Me
elements.

For example, to specify
x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];

beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq =
1

Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector
related to the Aeq matrix. If you pass beq as a row vector, solvers internally convert beq
to the column vector beq(:). For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities
Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, to specify
x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];

beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq =
1

Data Types: double

lb — Lower bounds
real vector | real array

 linprog

14-187

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of lb, then lb specifies that
x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that
x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all x-components are positive, lb = zeros(size(x0))

Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of ub, then ub specifies that
x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that
x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all x-components are less than one, ub = ones(size(x0))

Data Types: double

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Only the 'active-set' algorithm
uses x0, all other solvers ignore its value.

Example: x0 = ones(size(f))

Data Types: double

options — Optimization options
output of optimoptions | structure as optimset returns

Optimization options, specified as the output of optimoptions or a structure as
optimset returns.

14 Functions — Alphabetical List

14-188

Some options apply to all algorithms, and others are relevant for particular algorithms.
See “Optimization Options Reference” on page 13-7 for detailed information.

All Algorithms
Algorithm Choose the optimization algorithm:

• 'interior-point-legacy' (default)
• 'interior-point'

• 'dual-simplex'

• 'active-set'

• 'simplex'

For information on choosing the algorithm, see “Linear
Programming Algorithms” on page 2-10.

Diagnostics Display diagnostic information about the function to be
minimized or solved. Choose 'off' (default) or 'on'.

Display Level of display (see “Iterative Display” on page 3-16):

• 'final' (default) displays just the final output.
• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration. The 'iter'

option is unavailable for the 'active-set' algorithm.
LargeScale

Use Algorithm instead

Use the 'interior-point-legacy' algorithm when set
to 'on' (default). Use a medium-scale algorithm when set to
'off' (see Simplex in options). For more information, see
“Choosing the Algorithm” on page 2-7.

MaxIter Maximum number of iterations allowed, a positive integer.
The default is:

• 85 for the 'interior-point-legacy' algorithm
• 200 for the 'interior-point' algorithm
• 10*(numberOfEqualities + numberOfInequalities

+ numberOfVariables) for the 'dual-simplex'
algorithm

• 10*numberOfVariables for the 'simplex' algorithm

 linprog

14-189

• 10*max(numberOfVariables,

numberOfInequalities + numberOfBounds) for the
'active-set' algorithm

See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

TolFun Termination tolerance on the function value, a positive scalar.
The default is:

• 1e-8 for the 'interior-point' algorithm
• 1e-7 for the 'dual-simplex' algorithm
• 1e-6 for the 'interior-point' and 'simplex'

algorithms
• The option is not used for the 'active-set' algorithm

TolFun measures dual feasibility tolerance.
interior-point Algorithm
Preprocess Level of LP preprocessing prior to algorithm iterations.

Specify 'basic' (default) or 'none'.
TolCon Feasibility tolerance for constraints, a scalar from 1e-10

through 1e-3. TolCon measures primal feasibility tolerance.
The default is 1e-6.

Dual-Simplex Algorithm
MaxTime Maximum amount of time in seconds that the algorithm runs.

The default is Inf.
Preprocess Level of LP preprocessing prior to dual simplex algorithm

iterations. Specify 'basic' (default) or 'none'.
TolCon Feasibility tolerance for constraints, a scalar from 1e-10

through 1e-3. TolCon measures primal feasibility tolerance.
The default is 1e-4.

Simplex Algorithm
Simplex

Use Algorithm instead

If 'on', and if LargeScale is 'off', linprog uses the
simplex algorithm. The simplex algorithm uses a built-in
starting point, ignoring the starting point x0 if supplied.
The default is 'off', meaning linprog uses an active-set
algorithm.

14 Functions — Alphabetical List

14-190

Example: options = optimoptions('linprog','Algorithm','interior-
point','Display','iter')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry

f Linear objective function vector f
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
x0 Initial point for x, active set algorithm only
solver 'linprog'

options Options created with optimoptions

You must supply at least the solver field in the problem structure.

The simplest way to obtain a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments

x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of f
or x0.

fval — Objective function value at the solution
real number

 linprog

14-191

Objective function value at the solution, returned as a real number. Generally,
fval = f'*x.

exitflag — Reason linprog stopped
integer

Reason linprog stopped, returned as an integer.

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIter.
-2 No feasible point was found.
-3 Problem is unbounded.
-4 NaN value was encountered during execution of the algorithm.
-5 Both primal and dual problems are infeasible.
-7 Search direction became too small. No further progress could be

made.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields.

iterations Number of iterations
algorithm Optimization algorithm used
cgiterations 0 (interior-point algorithm only, included for backward

compatibility)
message Exit message
constrviolation Maximum of constraint functions
firstorderopt First-order optimality measure

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with these fields.

lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub

14 Functions — Alphabetical List

14-192

ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq

Limitations

• The 'active-set' algorithm has only 'off' and 'final' as Display options; you
cannot choose the iterative display option, 'iter'.

More About

Algorithms

Interior-Point-Legacy Algorithm

The 'interior-point-legacy' method is based on LIPSOL (Linear Interior Point
Solver, [3]), which is a variant of Mehrotra's predictor-corrector algorithm [2], a primal-
dual interior-point method. A number of preprocessing steps occur before the algorithm
begins to iterate. See “Interior-Point-Legacy Linear Programming” on page 8-8.

The first stage of the algorithm might involve some preprocessing of the constraints (see
“Interior-Point-Legacy Linear Programming” on page 8-8). Several conditions might
cause linprog to exit with an infeasibility message. In each case, linprog returns a
negative exitflag, indicating to indicate failure.

• If a row of all zeros is detected in Aeq, but the corresponding element of beq is not
zero, then the exit message is

Exiting due to infeasibility: An all-zero row in the

constraint matrix does not have a zero in corresponding

right-hand-side entry.

• If one of the elements of x is found not to be bounded below, then the exit message is

Exiting due to infeasibility: Objective f'*x is unbounded below.

• If one of the rows of Aeq has only one nonzero element, then the associated value in
x is called a singleton variable. In this case, the value of that component of x can be
computed from Aeq and beq. If the value computed violates another constraint, then
the exit message is

 linprog

14-193

Exiting due to infeasibility: Singleton variables in

equality constraints are not feasible.

• If the singleton variable can be solved for, but the solution violates the upper or lower
bounds, then the exit message is

Exiting due to infeasibility: Singleton variables in

the equality constraints are not within bounds.

Note The preprocessing steps are cumulative. For example, even if your constraint
matrix does not have a row of all zeros to begin with, other preprocessing steps can cause
such a row to occur.

When the preprocessing finishes, the iterative part of the algorithm begins until the
stopping criteria are met. (For more information about residuals, the primal problem,
the dual problem, and the related stopping criteria, see “Interior-Point-Legacy Linear
Programming” on page 8-8.) If the residuals are growing instead of getting smaller, or
the residuals are neither growing nor shrinking, one of the two following termination
messages is displayed, respectively,
One or more of the residuals, duality gap, or total relative error

has grown 100000 times greater than its minimum value so far:

or
One or more of the residuals, duality gap, or total relative error

has stalled:

After one of these messages is displayed, it is followed by one of the following messages
indicating that the dual, the primal, or both appear to be infeasible.

• The dual appears to be infeasible (and the primal unbounded). (The

primal residual < TolFun.)

• The primal appears to be infeasible (and the dual unbounded). (The

dual residual < TolFun.)

• The dual appears to be infeasible (and the primal unbounded)

since the dual residual > sqrt(TolFun). (The primal residual <

10*TolFun.)

• The primal appears to be infeasible (and the dual unbounded)

since the primal residual > sqrt(TolFun). (The dual residual <

10*TolFun.)

14 Functions — Alphabetical List

14-194

• The dual appears to be infeasible and the primal unbounded since

the primal objective < -1e+10 and the dual objective < 1e+6.

• The primal appears to be infeasible and the dual unbounded since

the dual objective > 1e+10 and the primal objective > -1e+6.

• Both the primal and the dual appear to be infeasible.

For example, the primal (objective) can be unbounded and the primal residual, which is a
measure of primal constraint satisfaction, can be small.

Interior-Point Algorithm

The 'interior-point' algorithm is similar to 'interior-point-legacy', but with
a more efficient factorization routine, and with different preprocessing. See “Interior-
Point linprog Algorithm” on page 8-2.

Dual-Simplex Algorithm

For a description, see “Dual-Simplex Algorithm” on page 8-19.

Active-Set and Simplex Algorithms

The 'active-set' algorithm uses a projection method as used in the quadprog
algorithm. linprog is an active set method and is thus a variation of the well-known
simplex method for linear programming [1]. The algorithm finds an initial feasible
solution by first solving another linear programming problem. For details, see “Active-Set
linprog Algorithm” on page 8-11.

For a description of the 'simplex' algorithm, see “linprog Simplex Algorithm” on page
8-15.

linprog gives a warning when the problem is infeasible.

Warning: The constraints are overly stringent;

there is no feasible solution.

In this case, linprog produces a result that minimizes the worst-case constraint
violation.

When the equality constraints are inconsistent, linprog gives

 linprog

14-195

Warning: The equality constraints are overly

stringent; there is no feasible solution.

Unbounded solutions result in the warning

Warning: The solution is unbounded and at infinity;

the constraints are not restrictive enough.

In this case, linprog returns a value of x that satisfies the constraints.
• “Optimization Problem Setup”
• “Linear Programming Algorithms” on page 8-2

References

[1] Dantzig, G.B., A. Orden, and P. Wolfe. “Generalized Simplex Method for Minimizing a
Linear Form Under Linear Inequality Restraints.” Pacific Journal Math., Vol. 5,
1955, pp. 183–195.

[2] Mehrotra, S. “On the Implementation of a Primal-Dual Interior Point Method.” SIAM
Journal on Optimization, Vol. 2, 1992, pp. 575–601.

[3] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point Methods
Under the MATLAB Environment.” Technical Report TR96-01, Department
of Mathematics and Statistics, University of Maryland, Baltimore County,
Baltimore, MD, July 1995.

See Also
intlinprog | mpsread | optimoptions | quadprog

Introduced before R2006a

14 Functions — Alphabetical List

14-196

lsqcurvefit
Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense

Nonlinear least-squares solver

Find coefficients x that solve the problem

min (,) min , ,
x x

i i
i

F x xdata ydata F x xdata ydata- = () -()Â2

2 2

given input data xdata, and the observed output ydata, where xdata and ydata are
matrices or vectors, and F (x, xdata) is a matrix-valued or vector-valued function of the
same size as ydata.

Optionally, the components of x can have lower and upper bounds lb, and ub. The
arguments x, lb, and ub can be vectors or matrices; see “Matrix Arguments” on page 2-30.

The lsqcurvefit function uses the same algorithm as lsqnonlin. lsqcurvefit
simply provides a convenient interface for data-fitting problems.

Rather than compute the sum of squares, lsqcurvefit requires the user-defined
function to compute the vector-valued function

F x xdata

F x xdata

F x xdata

F x xdata k

(,)

, ()

, ()

, ()

=

()
()

()

È

Î

Í
Í
Í
Í
Í

1

2

M

˘̆

˚

˙
˙
˙
˙
˙

.

Syntax

x = lsqcurvefit(fun,x0,xdata,ydata)

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)

x = lsqcurvefit(problem)

[x,resnorm] = lsqcurvefit(___)

[x,resnorm,residual,exitflag,output] = lsqcurvefit(___)

 lsqcurvefit

14-197

[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqcurvefit(___)

Description

x = lsqcurvefit(fun,x0,xdata,ydata) starts at x0 and finds coefficients x to best
fit the nonlinear function fun(x,xdata) to the data ydata (in the least-squares sense).
ydata must be the same size as the vector (or matrix) F returned by fun.

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the vector function fun(x), if necessary.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always in the range
lb ≤ x ≤ ub. You can fix the solution component x(i) by specifying lb(i) = ub(i).

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the interior of the
box defined by the bounds. Components that respect the bounds are not changed.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) minimizes with the
optimization options specified in options. Use optimoptions to set these options. Pass
empty matrices for lb and ub if no bounds exist.

x = lsqcurvefit(problem) finds the minimum for problem, where problem is
a structure described in “Input Arguments” on page 14-208. Create the problem
structure by exporting a problem from Optimization app, as described in “Exporting Your
Work” on page 5-11.

[x,resnorm] = lsqcurvefit(___), for any input arguments, returns the value of
the squared 2-norm of the residual at x: sum((fun(x,xdata)-ydata).^2).

[x,resnorm,residual,exitflag,output] = lsqcurvefit(___) additionally
returns the value of the residual fun(x,xdata)-ydata at the solution x, a value

14 Functions — Alphabetical List

14-198

exitflag that describes the exit condition, and a structure output that contains
information about the optimization process.

[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqcurvefit(___) additionally returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x, and the Jacobian of fun at the solution x.

Examples

Simple Exponential Fit

Suppose that you have observation time data xdata and observed response data ydata,
and you want to find parameters and to fit a model of the form

Input the observation times and responses.

xdata = ...

 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...

 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Fit the model using the starting point x0 = [100,-1].

x0 = [100,-1];

x = lsqcurvefit(fun,x0,xdata,ydata)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

x =

 lsqcurvefit

14-199

 498.8309 -0.1013

Plot the data and the fitted curve.

times = linspace(xdata(1),xdata(end));

plot(xdata,ydata,'ko',times,fun(x,times),'b-')

legend('Data','Fitted exponential')

title('Data and Fitted Curve')

Best Fit with Bound Constraints

Find the best exponential fit to data where the fitting parameters are constrained.

14 Functions — Alphabetical List

14-200

Generate data from an exponential decay model plus noise. The model is

with ranging from 0 through 3, and normally distributed noise with mean 0 and
standard deviation 0.05.

rng default % for reproducibility

xdata = linspace(0,3);

ydata = exp(-1.3*xdata) + 0.05*randn(size(xdata));

The problem is: given the data (xdata, ydata), find the exponential decay model
 that best fits the data, with the parameters bounded as follows:

lb = [0,-2];

ub = [3/4,-1];

Create the model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Create an initial guess.

x0 = [1/2,-2];

Solve the bounded fitting problem.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

x =

 lsqcurvefit

14-201

 0.7500 -1.0000

Examine how well the resulting curve fits the data. Because the bounds keep the solution
away from the true values, the fit is mediocre.

plot(xdata,ydata,'ko',xdata,fun(x,xdata),'b-')

legend('Data','Fitted exponential')

title('Data and Fitted Curve')

Compare Algorithms

Compare the results of fitting with the default 'trust-region-reflective'
algorithm and the 'levenberg-marquardt' algorithm.

14 Functions — Alphabetical List

14-202

Suppose that you have observation time data xdata and observed response data ydata,
and you want to find parameters and to fit a model of the form

Input the observation times and responses.

xdata = ...

 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...

 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Fit the model using the starting point x0 = [100,-1].

x0 = [100,-1];

x = lsqcurvefit(fun,x0,xdata,ydata)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

x =

 498.8309 -0.1013

Compare the solution with that of a 'levenberg-marquardt' fit.

options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');

lb = [];

ub = [];

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)

 lsqcurvefit

14-203

Local minimum possible.

lsqcurvefit stopped because the relative size of the current step is less than

the default value of the step size tolerance.

x =

 498.8309 -0.1013

The two algorithms converged to the same solution. Plot the data and the fitted
exponential model.

times = linspace(xdata(1),xdata(end));

plot(xdata,ydata,'ko',times,fun(x,times),'b-')

legend('Data','Fitted exponential')

title('Data and Fitted Curve')

14 Functions — Alphabetical List

14-204

Compare Algorithms and Examine Solution Process

Compare the results of fitting with the default 'trust-region-reflective'
algorithm and the 'levenberg-marquardt' algorithm. Examine the solution process to
see which is more efficient in this case.

Suppose that you have observation time data xdata and observed response data ydata,
and you want to find parameters and to fit a model of the form

Input the observation times and responses.

 lsqcurvefit

14-205

xdata = ...

 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...

 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Fit the model using the starting point x0 = [100,-1].

x0 = [100,-1];

[x,resnorm,residual,exitflag,output] = lsqcurvefit(fun,x0,xdata,ydata);

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

Compare the solution with that of a 'levenberg-marquardt' fit.

options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');

lb = [];

ub = [];

[x2,resnorm2,residual2,exitflag2,output2] = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options);

Local minimum possible.

lsqcurvefit stopped because the relative size of the current step is less than

the default value of the step size tolerance.

Are the solutions equivalent?

norm(x-x2)

14 Functions — Alphabetical List

14-206

ans =

 2.0619e-06

Yes, the solutions are equivalent.

Which algorithm took fewer function evaluations to arrive at the solution?

fprintf(['The ''trust-region-reflective'' algorithm took %d function evaluations,\n',...

 'and the ''levenberg-marquardt'' algorithm took %d function evaluations.\n'],...

 output.funcCount,output2.funcCount)

The 'trust-region-reflective' algorithm took 87 function evaluations,

and the 'levenberg-marquardt' algorithm took 72 function evaluations.

Plot the data and the fitted exponential model.

times = linspace(xdata(1),xdata(end));

plot(xdata,ydata,'ko',times,fun(x,times),'b-')

legend('Data','Fitted exponential')

title('Data and Fitted Curve')

 lsqcurvefit

14-207

The fit looks good. How large are the residuals?

fprintf(['The ''trust-region-reflective'' algorithm has residual norm %f,\n',...

 'and the ''levenberg-marquardt'' algorithm has residual norm %f.\n'],...

 resnorm,resnorm2)

The 'trust-region-reflective' algorithm has residual norm 9.504887,

and the 'levenberg-marquardt' algorithm has residual norm 9.504887.

• “Nonlinear Least Squares (Curve Fitting)”

14 Functions — Alphabetical List

14-208

Input Arguments

fun — Function you want to fit
function handle | name of function

Function you want to fit, specified as a function handle or the name of a function. fun
is a function that takes two inputs: a vector or matrix x, and a vector or matrix xdata.
fun returns a vector or matrix F, the objective function evaluated at x and xdata. The
function fun can be specified as a function handle for a function file:

x = lsqcurvefit(@myfun,x0,xdata,ydata)

where myfun is a MATLAB function such as

function F = myfun(x,xdata)

F = ... % Compute function values at x, xdata

fun can also be a function handle for an anonymous function.

f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata);

x = lsqcurvefit(f,x0,xdata,ydata);

If the user-defined values for x and F are matrices, lsqcurvefit converts them to
vectors using linear indexing.

Note fun should return fun(x,xdata), and not the sum-of-squares
sum((fun(x,xdata)-ydata).^2). lsqcurvefit implicitly computes the sum of
squares of the components of fun(x,xdata)-ydata. See “Examples” on page 14- .

If the Jacobian can also be computed and the Jacobian option is 'on', set by

options = optimoptions('lsqcurvefit','Jacobian','on')

then the function fun must return a second output argument with the Jacobian value J
(a matrix) at x. By checking the value of nargout, the function can avoid computing J
when fun is called with only one output argument (in the case where the optimization
algorithm only needs the value of F but not J).
function [F,J] = myfun(x,xdata)

F = ... % objective function values at x

 lsqcurvefit

14-209

if nargout > 1 % two output arguments

 J = ... % Jacobian of the function evaluated at x

end

If fun returns a vector (matrix) of m components and x has length n, where n is the
length of x0, the Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative
of F(i) with respect to x(j). (The Jacobian J is the transpose of the gradient of F.) For
more information, see “Writing Vector and Matrix Objective Functions” on page 2-25.
Example: @(x,xdata)x(1)*exp(-x(2)*xdata)

Data Types: char | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements
in, and size of, x0 to determine the number and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

xdata — Input data for model
real vector | real array

Input data for model, specified as a real vector or real array. The model is
ydata = fun(x,xdata),

where xdata and ydata are fixed arrays, and x is the array of parameters that
lsqcurvefit changes to search for a minimum sum of squares.

Example: xdata = [1,2,3,4]

Data Types: double

ydata — Response data for model
real vector | real array

Response data for model, specified as a real vector or real array. The model is
ydata = fun(x,xdata),

where xdata and ydata are fixed arrays, and x is the array of parameters that
lsqcurvefit changes to search for a minimum sum of squares.

14 Functions — Alphabetical List

14-210

The ydata array must be the same size and shape as the array fun(x0,xdata).

Example: ydata = [1,2,3,4]

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of lb, then lb specifies that
x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that
x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all x-components are positive, lb = zeros(size(x0))

Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of ub, then ub specifies that
x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that
x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all x-components are less than one, ub = ones(size(x0))

Data Types: double

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as
optimset returns.

 lsqcurvefit

14-211

Some options apply to all algorithms, and others are relevant for particular algorithms.
See “Optimization Options Reference” on page 13-7 for detailed information.

All Algorithms
Algorithm Choose between 'trust-region-reflective' (default)

and 'levenberg-marquardt'. Set the initial Levenberg-
Marquardt parameter λ by setting Algorithm to a cell array
such as {'levenberg-marquardt',.005}. The default
λ = 0.01.

The Algorithm option specifies a preference for which
algorithm to use. It is only a preference, because certain
conditions must be met to use each algorithm. For the trust-
region-reflective algorithm, the nonlinear system of equations
cannot be underdetermined; that is, the number of equations
(the number of elements of F returned by fun) must be at
least as many as the length of x. The Levenberg-Marquardt
algorithm does not handle bound constraints. For more
information on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradients of objective
or constraints) to finite-differencing derivatives. Choices are
'off' (default) or 'on'.

Diagnostics Display diagnostic information about the function to be
minimized or solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a
positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a
positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-16):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the

default exit message.
• 'iter-detailed' displays output at each iteration, and

gives the technical exit message.

14 Functions — Alphabetical List

14-212

• 'final' (default) displays just the final output, and gives
the default exit message.

• 'final-detailed' displays just the final output, and
gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor for finite differences. When
you set FinDiffRelStep to a vector v, forward finite
differences steps delta are
delta = v.*sign′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) = 1. Central
finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The default is
sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

FinDiffType Finite differences, used to estimate gradients, are either
'forward' (default), or 'central' (centered). 'central'
takes twice as many function evaluations, but should be more
accurate.

The algorithm is careful to obey bounds when estimating
both types of finite differences. So, for example, it could
take a backward, rather than a forward, difference to avoid
evaluating at a point outside bounds.

FunValCheck Check whether function values are valid. 'on' displays an
error when the function returns a value that is complex, Inf,
or NaN. The default 'off' displays no error.

Jacobian If 'off' (default), the solver approximates the Jacobian
using finite differences. If 'on', the solver uses a user-defined
Jacobian (defined in fun), or Jacobian information (when
using JacobMult), for the objective function.

MaxFunEvals Maximum number of function evaluations allowed, a
positive integer. The default is 100*numberOfVariables.
See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer.
The default is 400. See “Tolerances and Stopping Criteria” on
page 2-61 and “Iterations and Function Counts” on page 3-10.

 lsqcurvefit

14-213

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Function” on page 13-20.

PlotFcns Plots various measures of progress while the algorithm
executes; select from predefined plots or write your own. Pass
a function handle or a cell array of function handles. The
default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.
• @optimplotresnorm plots the norm of the residuals.
• @optimplotstepsize plots the step size.
• @optimplotfirstorderopt plots the first-order

optimality measure.

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolFun Termination tolerance on the function value, a positive scalar.
The default is 1e-6. See “Tolerances and Stopping Criteria”
on page 2-61.

TolX Termination tolerance on x, a positive scalar. The default is
1e-6. See “Tolerances and Stopping Criteria” on page 2-61.

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point. The
default value is ones(numberofvariables,1). The solver
uses TypicalX for scaling finite differences for gradient
estimation.

Trust-Region-Reflective Algorithm
JacobMult

14 Functions — Alphabetical List

14-214

 Function handle for Jacobian multiply function. For large-
scale structured problems, this function computes the
Jacobian matrix product J*Y, J'*Y, or J'*(J*Y) without
actually forming J. The function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains the matrix used to compute J*Y (or
J'*Y, or J'*(J*Y)). The first argument Jinfo must be
the same as the second argument returned by the objective
function fun, for example, by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. flag determines which product to
compute:

• If flag == 0 then W = J'*(J*Y).
• If flag > 0 then W = J*Y.
• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. The solver uses
Jinfo to compute the preconditioner. See “Passing Extra
Parameters” on page 2-50 for information on how to supply
values for any additional parameters jmfun needs.

Note 'Jacobian' must be set to 'on' for the solver to pass
Jinfo from fun to jmfun.

See “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-75 and “Jacobian Multiply Function
with Linear Least Squares” on page 10-26 for similar
examples.

 lsqcurvefit

14-215

JacobPattern Sparsity pattern of the Jacobian for finite differencing. Set
JacobPattern(i,j) = 1 when fun(i) depends on x(j).
Otherwise, set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have ∂fun(i)/
∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to compute the
Jacobian matrix J in fun, though you can determine (say, by
inspection) when fun(i) depends on x(j). The solver can
approximate J via sparse finite differences when you give
JacobPattern.

If the structure is unknown, do not set JacobPattern. The
default behavior is as if JacobPattern is a dense matrix
of ones. Then the solver computes a full finite-difference
approximation in each iteration. This can be expensive
for large problems, so it is usually better to determine the
sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate
gradient) iterations, a positive scalar. The default is
max(1,numberOfVariables/2). For more information, see
“Large Scale Nonlinear Least Squares” on page 10-5.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative
integer. The default PrecondBandWidth is Inf,
which means a direct factorization (Cholesky) is used
rather than the conjugate gradients (CG). The direct
factorization is computationally more expensive than CG,
but produces a better quality step towards the solution.
Set PrecondBandWidth to 0 for diagonal preconditioning
(upper bandwidth of 0). For some problems, an intermediate
bandwidth reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration, a positive scalar.
The default is 0.1.

Levenberg-Marquardt Algorithm
InitDamping Initial value of the Levenberg-Marquardt parameter, a

positive scalar. Default is 1e-2. For details, see “Levenberg-
Marquardt Method” on page 10-7.

14 Functions — Alphabetical List

14-216

ScaleProblem 'Jacobian' can sometimes improve the convergence of a
poorly scaled problem; the default is 'none'.

Example: options = optimoptions('lsqcurvefit','Jacobian','on')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry

objective Objective function of x and xdata
x0 Initial point for x, active set algorithm only
xdata Input data for objective function
ydata Output data to be matched by objective function
lb Vector of lower bounds
ub Vector of upper bounds
solver 'lsqcurvefit'

options Options created with optimoptions

You must supply at least the objective, x0, solver, xdata, ydata, and options
fields in the problem structure.

The simplest way of obtaining a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments

x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size
of x0. Typically, x is a local solution to the problem when exitflag is positive. For
information on the quality of the solution, see “When the Solver Succeeds” on page 4-22.

 lsqcurvefit

14-217

resnorm — Norm of the residual
nonnegative real

Norm of the residual, returned as a nonnegative real. resnorm is the squared 2-norm of
the residual at x: sum((fun(x,xdata)-ydata).^2).

residual — Value of objective function at solution
vector

Value of objective function at solution, returned as a vector. In general, residual =
fun(x,xdata)-ydata.

exitflag — Reason the solver stopped
integer

Reason the solver stopped, returned as an integer.

1 Function converged to a solution x.
2 Change in x was less than the specified tolerance.
3 Change in the residual was less than the specified

tolerance.
4 Magnitude of search direction was smaller than the

specified tolerance.
0 Number of iterations exceeded options.MaxIter

or number of function evaluations exceeded
options.MaxFunEvals.

-1 Output function terminated the algorithm.
-2 Problem is infeasible: the bounds lb and ub are

inconsistent.
-4 Line search could not sufficiently decrease the residual

along the current search direction.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

firstorderopt Measure of first-order optimality

14 Functions — Alphabetical List

14-218

iterations Number of iterations taken
funcCount The number of function evaluations
cgiterations Total number of PCG iterations (trust-region-reflective

algorithm only)
stepsize Final displacement in x
algorithm Optimization algorithm used
message Exit message

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with fields:

lower Lower bounds lb
upper Upper bounds ub

jacobian — Jacobian at the solution
real matrix

Jacobian at the solution, returned as a real matrix. jacobian(i,j) is the partial
derivative of fun(i) with respect to x(j) at the solution x.

Limitations

• The Levenberg-Marquardt algorithm does not handle bound constraints.
• The trust-region-reflective algorithm does not solve underdetermined systems; it

requires that the number of equations, i.e., the row dimension of F, be at least as
great as the number of variables. In the underdetermined case, lsqcurvefit uses
the Levenberg-Marquardt algorithm.

Since the trust-region-reflective algorithm does not handle underdetermined systems
and the Levenberg-Marquardt does not handle bound constraints, problems that have
both of these characteristics cannot be solved by lsqcurvefit.

• lsqcurvefit can solve complex-valued problems directly with the levenberg-
marquardt algorithm. However, this algorithm does not accept bound constraints.
For a complex problem with bound constraints, split the variables into real and

 lsqcurvefit

14-219

imaginary parts, and use the trust-region-reflective algorithm. See “Fit a
Model to Complex-Valued Data” on page 10-33.

• The preconditioner computation used in the preconditioned conjugate gradient part
of the trust-region-reflective method forms JTJ (where J is the Jacobian matrix)
before computing the preconditioner. Therefore, a row of J with many nonzeros, which
results in a nearly dense product JTJ, can lead to a costly solution process for large
problems.

• If components of x have no upper (or lower) bounds, lsqcurvefit prefers that the
corresponding components of ub (or lb) be set to inf (or -inf for lower bounds) as
opposed to an arbitrary but very large positive (or negative for lower bounds) number.

You can use the trust-region reflective algorithm in lsqnonlin, lsqcurvefit, and
fsolve with small- to medium-scale problems without computing the Jacobian in fun or
providing the Jacobian sparsity pattern. (This also applies to using fmincon or fminunc
without computing the Hessian or supplying the Hessian sparsity pattern.) How small is
small- to medium-scale? No absolute answer is available, as it depends on the amount of
virtual memory in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command
J = sparse(ones(m,n)) causes an Out of memory error on your machine, then this
is certainly too large a problem. If it does not result in an error, the problem might still
be too large. You can find out only by running it and seeing if MATLAB runs within the
amount of virtual memory available on your system.

More About

Algorithms

The Levenberg-Marquardt and trust-region-reflective methods are based on the
nonlinear least-squares algorithms also used in fsolve.

• The default trust-region-reflective algorithm is a subspace trust-region method and
is based on the interior-reflective Newton method described in [1] and [2]. Each
iteration involves the approximate solution of a large linear system using the method
of preconditioned conjugate gradients (PCG). See “Trust-Region-Reflective Least
Squares” on page 10-3.

• The Levenberg-Marquardt method is described in references [4], [5], and [6]. See
“Levenberg-Marquardt Method” on page 10-7.

14 Functions — Alphabetical List

14-220

• “Optimization Problem Setup”
• “Least-Squares (Model Fitting) Algorithms” on page 10-2

References

[1] Coleman, T.F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds.” SIAM Journal on Optimization, Vol. 6, 1996,
pp. 418–445.

[2] Coleman, T.F. and Y. Li. “On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds.” Mathematical
Programming, Vol. 67, Number 2, 1994, pp. 189–224.

[3] Dennis, J. E. Jr. “Nonlinear Least-Squares.” State of the Art in Numerical Analysis,
ed. D. Jacobs, Academic Press, pp. 269–312.

[4] Levenberg, K. “A Method for the Solution of Certain Problems in Least-Squares.”
Quarterly Applied Mathematics 2, 1944, pp. 164–168.

[5] Marquardt, D. “An Algorithm for Least-squares Estimation of Nonlinear Parameters.”
SIAM Journal Applied Mathematics, Vol. 11, 1963, pp. 431–441.

[6] Moré, J. J. “The Levenberg-Marquardt Algorithm: Implementation and Theory.”
Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630,
Springer Verlag, 1977, pp. 105–116.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK 1. Argonne
National Laboratory, Rept. ANL–80–74, 1980.

[8] Powell, M. J. D. “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic
Equations.” Numerical Methods for Nonlinear Algebraic Equations, P.
Rabinowitz, ed., Ch.7, 1970.

See Also
fsolve | lsqnonlin | optimoptions

Introduced before R2006a

 lsqlin

14-221

lsqlin
Solve constrained linear least-squares problems

Linear least-squares solver with bounds or linear constraints.

Solves least-squares curve fitting problems of the form

min

,

,

.
x

C x d

A x b

Aeq x beq

lb x ub

1

2 2

2
◊ -

◊ £

◊ =

£ £

Ï

Ì
Ô

Ó
Ô

 such that

Syntax

x = lsqlin(C,d,A,b)

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)

x = lsqlin(problem)

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(___)

Description

x = lsqlin(C,d,A,b) solves the linear system C*x = d in the least-squares sense,
subject to A*x ≤ b.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) adds linear equality constraints
Aeq*x = beq and bounds lb ≤ x ≤ ub. If you do not need certain constraints such as Aeq
and beq, set them to []. If x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is
unbounded above, set ub(i) = Inf.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) minimizes with an initial point
x0 and the optimization options specified in options. Use optimoptions to set these
options. If you do not want to include an initial point, set the x0 argument to [].

x = lsqlin(problem) finds the minimum for problem, where problem is a structure.
Create the problem structure by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

14 Functions — Alphabetical List

14-222

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(___), for any input
arguments described above, returns:

• The squared 2-norm of the residual resnorm = C x d◊ -

2

2

• The residual residual = C*x - d
• A value exitflag describing the exit condition
• A structure output containing information about the optimization process
• A structure lambda containing the Lagrange multipliers

The factor ½ in the definition of the problem affects the values in the lambda
structure.

Examples
Least Squares with Linear Inequality Constraints

Find the x that minimizes the norm of C*x - d for an overdetermined problem with
linear inequality constraints.

Specify the problem and constraints.

C = [0.9501 0.7620 0.6153 0.4057

 0.2311 0.4564 0.7919 0.9354

 0.6068 0.0185 0.9218 0.9169

 0.4859 0.8214 0.7382 0.4102

 0.8912 0.4447 0.1762 0.8936];

d = [0.0578

 0.3528

 0.8131

 0.0098

 0.1388];

A = [0.2027 0.2721 0.7467 0.4659

 0.1987 0.1988 0.4450 0.4186

 0.6037 0.0152 0.9318 0.8462];

b = [0.5251

 0.2026

 0.6721];

Call lsqlin to solve the problem.

x = lsqlin(C,d,A,b)

 lsqlin

14-223

Warning: The trust-region-reflective algorithm can handle bound constraints

only;

 using active-set algorithm instead.

Optimization terminated.

x =

 0.1299

 -0.5757

 0.4251

 0.2438

Least Squares with Linear Constraints and Bounds

Find the x that minimizes the norm of C*x - d for an overdetermined problem with
linear inequality constraints and bounds.

Specify the problem and constraints.

C = [0.9501 0.7620 0.6153 0.4057

 0.2311 0.4564 0.7919 0.9354

 0.6068 0.0185 0.9218 0.9169

 0.4859 0.8214 0.7382 0.4102

 0.8912 0.4447 0.1762 0.8936];

d = [0.0578

 0.3528

 0.8131

 0.0098

 0.1388];

A =[0.2027 0.2721 0.7467 0.4659

 0.1987 0.1988 0.4450 0.4186

 0.6037 0.0152 0.9318 0.8462];

b =[0.5251

 0.2026

 0.6721];

Aeq = [3 5 7 9];

beq = 4;

lb = -0.1*ones(4,1);

ub = 2*ones(4,1);

Call lsqlin to solve the problem.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)

Warning: The trust-region-reflective algorithm can handle bound constraints

only;

14 Functions — Alphabetical List

14-224

 using active-set algorithm instead.

Optimization terminated.

x =

 -0.1000

 -0.1000

 0.1599

 0.4090

Least Squares with Start Point and Nondefault Options

Find the x that minimizes the norm of C*x - d for an overdetermined problem with
linear inequality constraints. Use a start point and nondefault options.

Specify the problem and constraints.

C = [0.9501 0.7620 0.6153 0.4057

 0.2311 0.4564 0.7919 0.9354

 0.6068 0.0185 0.9218 0.9169

 0.4859 0.8214 0.7382 0.4102

 0.8912 0.4447 0.1762 0.8936];

d = [0.0578

 0.3528

 0.8131

 0.0098

 0.1388];

A =[0.2027 0.2721 0.7467 0.4659

 0.1987 0.1988 0.4450 0.4186

 0.6037 0.0152 0.9318 0.8462];

b =[0.5251

 0.2026

 0.6721];

Aeq = [];

beq = [];

lb = [];

ub = [];

Set a start point.

x0 = 0.1*ones(4,1);

Set options to choose the 'active-set' algorithm, which is the only algorithm that
uses a start point.

 lsqlin

14-225

options = optimoptions('lsqlin','Algorithm','active-set');

Call lsqlin to solve the problem.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)

Optimization terminated.

x =

 0.1299

 -0.5757

 0.4251

 0.2438

Return All Outputs

Obtain and interpret all lsqlin outputs.

Define a problem with linear inequality constraints and bounds. The problem is
overdetermined because there are four columns in the C matrix but five rows. This means
the problem has four unknowns and five conditions, even before including the linear
constraints and bounds.

C = [0.9501 0.7620 0.6153 0.4057

 0.2311 0.4564 0.7919 0.9354

 0.6068 0.0185 0.9218 0.9169

 0.4859 0.8214 0.7382 0.4102

 0.8912 0.4447 0.1762 0.8936];

d = [0.0578

 0.3528

 0.8131

 0.0098

 0.1388];

A =[0.2027 0.2721 0.7467 0.4659

 0.1987 0.1988 0.4450 0.4186

 0.6037 0.0152 0.9318 0.8462];

b =[0.5251

 0.2026

 0.6721];

lb = -0.1*ones(4,1);

ub = 2*ones(4,1);

Set options to use the 'interior-point' algorithm.

14 Functions — Alphabetical List

14-226

options = optimoptions('lsqlin','Algorithm','interior-point');

The 'interior-point' algorithm does not use an initial point, so set x0 to [].

x0 = [];

Call lsqlin with all outputs.

[x,resnorm,residual,exitflag,output,lambda] = ...

 lsqlin(C,d,A,b,[],[],lb,ub,x0,options)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

 -0.1000

 -0.1000

 0.2152

 0.3502

resnorm =

 0.1672

residual =

 0.0455

 0.0764

 -0.3562

 0.1620

 0.0784

exitflag =

 lsqlin

14-227

 1

output =

 message: 'Minimum found that satisfies the constraints....'

 algorithm: 'interior-point'

 firstorderopt: 1.6296e-08

 constrviolation: 0

 iterations: 6

 cgiterations: []

lambda =

 ineqlin: [3x1 double]

 eqlin: [0x1 double]

 lower: [4x1 double]

 upper: [4x1 double]

Examine the nonzero Lagrange multiplier fields in more detail. First examine the
Lagrange multipliers for the linear inequality constraint.

lambda.ineqlin

ans =

 0.0000

 0.2392

 0.0000

Lagrange multipliers are nonzero exactly when the solution is on the corresponding
constraint boundary. In other words, Lagrange multipliers are nonzero when the
corresponding constraint is active. lambda.ineqlin(2) is nonzero. This means that the
second element in A*x should equal the second element in b, because the constraint is
active.

[A(2,:)*x,b(2)]

ans =

14 Functions — Alphabetical List

14-228

 0.2026 0.2026

Now examine the Lagrange multipliers for the lower and upper bound constraints.

lambda.lower

ans =

 0.0409

 0.2784

 0.0000

 0.0000

lambda.upper

ans =

 1.0e-10 *

 0.4665

 0.4751

 0.5537

 0.6247

The first two elements of lambda.lower are nonzero. You see that x(1) and x(2) are
at their lower bounds, -0.1. All elements of lambda.upper are essentially zero, and you
see that all components of x are less than their upper bound, 2.

• “Linear Least Squares with Bound Constraints” on page 10-21
• “Optimization App with the lsqlin Solver” on page 10-23
• “Jacobian Multiply Function with Linear Least Squares” on page 10-26

Input Arguments

C — Multiplier matrix
real matrix

 lsqlin

14-229

Multiplier matrix, specified as a matrix of doubles. C represents the multiplier of the
solution x in the expression C*x - d. C is M-by-N, where M is the number of equations,
and N is the number of elements of x.

Example: C = [1,4;2,5;7,8]

Data Types: double

d — Constant vector
real vector

Constant vector, specified as a vector of doubles. d represents the additive constant term
in the expression C*x - d. d is M-by-1, where M is the number of equations.

Example: d = [5;0;-12]

Data Types: double

A — Linear inequality constraint matrix
real matrix

Linear inequality constraint matrix, specified as a matrix of doubles. A represents the
linear coefficients in the constraints A*x ≤ b. A has size Mineq-by-N, where Mineq is the
number of constraints and N is the number of elements of x. To save memory, pass A as a
sparse matrix.
Example: A = [4,3;2,0;4,-1]; means three linear inequalities (three rows) for two
decision variables (two columns).
Data Types: double

b — Linear inequality constraint vector
real vector

Linear inequality constraint vector, specified as a vector of doubles. b represents the
constant vector in the constraints A*x ≤ b. b has length Mineq, where A is Mineq-by-N.

Example: [4,0]

Data Types: double

Aeq — Linear equality constraint matrix
[] (default) | real matrix

Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the
linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is

14 Functions — Alphabetical List

14-230

the number of constraints and N is the number of elements of x. To save memory, pass
Aeq as a sparse matrix.

Example: A = [4,3;2,0;4,-1]; means three linear inequalities (three rows) for two
decision variables (two columns).
Data Types: double

beq — Linear equality constraint vector
[] (default) | real vector

Linear equality constraint vector, specified as a vector of doubles. beq represents the
constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-
by-N.

Example: [4,0]

Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds
elementwise in lb ≤ x ≤ ub.

Internally, lsqlin converts an array lb to the vector lb(:).

Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.

Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds
elementwise in lb ≤ x ≤ ub.

Internally, lsqlin converts an array ub to the vector ub(:).

Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.

Data Types: double

x0 — Initial point
[] (default) | real vector or array

 lsqlin

14-231

Initial point for the solution process, specified as a vector or array of doubles. x0 is used
only by the 'active-set' algorithm. Optional.

If you do not provide an x0 for the 'active-set' algorithm, lsqlin sets x0 to the zero
vector. If any component of this zero vector x0 violates the bounds, lsqlin sets x0 to a
point in the interior of the box defined by the bounds.
Example: x0 = [4;-3]

Data Types: double

options — Options for lsqlin
options created using optimoptions or the Optimization app

Options for lsqlin, specified as the output of the optimoptions function or the
Optimization app.

All Algorithms

Algorithm Choose the algorithm:

• 'trust-region-reflective' (default)
• 'interior-point'

• 'active-set'

The 'trust-region-reflective' algorithm allows only upper
and lower bounds, meaning no linear inequalities or equalities. If
you specify both the 'trust-region-reflective' and linear
constraints, lsqlin uses the active-set algorithm.

The trust-region-reflective algorithm does not allow equal
upper and lower bounds. Use one of the other algorithms for this
case.

For more information on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

Diagnostics Display diagnostic information about the function to be minimized
or solved. The choices are 'on' or the default 'off'.

Display Level of display returned to the command line.

• 'off' or 'none' displays no output.

14 Functions — Alphabetical List

14-232

• 'final' displays just the final output (default).

The 'interior-point' algorithm allows additional values:

• 'iter' gives iterative display.
• 'iter-detailed' gives iterative display with a detailed exit

message.
• 'final-detailed' displays just the final output, with a

detailed exit message.
LargeScale

Use Algorithm
instead of
LargeScale.

Use the 'trust-region-reflective' algorithm if possible
when set to 'on' (default). Use the 'active-set' algorithm
when set to 'off'. You cannot choose the 'interior-point'
algorithm using LargeScale.

MaxIter Maximum number of iterations allowed, a positive integer. The
default value is 200.

trust-region-reflective Algorithm Options

 JacobMult Function handle for the Jacobian multiply function. For large-
scale structured problems, this function should compute the
Jacobian matrix product C*Y, C'*Y, or C'*(C*Y) without
actually forming C. Write the function in the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains a matrix used to compute C*Y (or C'*Y,
or C'*(C*Y)).

jmfun must compute one of three different products,
depending on the value of flag that lsqlin passes:

• If flag == 0 then W = C'*(C*Y).
• If flag > 0 then W = C*Y.
• If flag < 0 then W = C'*Y.

In each case, jmfun need not form C explicitly. lsqlin uses
Jinfo to compute the preconditioner. See “Passing Extra
Parameters” on page 2-50 for information on how to supply
extra parameters if necessary.

 lsqlin

14-233

See “Jacobian Multiply Function with Linear Least Squares”
on page 10-26 for an example.

MaxPCGIter Maximum number of PCG (preconditioned conjugate
gradient) iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more
information, see “Trust-Region-Reflective Algorithm” on page
14-237.

PrecondBandWidth Upper bandwidth of preconditioner for PCG (preconditioned
conjugate gradient). By default, diagonal preconditioning is
used (upper bandwidth of 0). For some problems, increasing
the bandwidth reduces the number of PCG iterations. Setting
PrecondBandWidth to Inf uses a direct factorization
(Cholesky) rather than the conjugate gradients (CG). The
direct factorization is computationally more expensive than
CG, but produces a better quality step toward the solution. For
more information, see “Trust-Region-Reflective Algorithm” on
page 14-237.

TolFun Termination tolerance on the function value, a positive scalar.
The default is 100*eps, about 2.2204e-14.

TolPCG Termination tolerance on the PCG (preconditioned conjugate
gradient) iteration, a positive scalar. The default is 0.1.

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point. The
default value is ones(numberofvariables,1). lsqlin uses
TypicalX internally for scaling. TypicalX has an effect only
when x has unbounded components, and when a TypicalX
value for an unbounded component is larger than 1.

interior-point Algorithm Options

TolCon Tolerance on the constraint violation, a positive scalar. The
default is 1e-8.

TolFun Termination tolerance on the function value, a positive scalar.
The default is 1e-8.

problem — Optimization problem
structure

Optimization problem, specified as a structure with the following fields.

14 Functions — Alphabetical List

14-234

C Matrix multiplier in the term C*x - d
d Additive constant in the term C*x - d
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
x0 Initial point for x
solver 'lsqlin'

options Options created with optimoptions

Create the problem structure by exporting a problem from the Optimization app, as
described in “Exporting Your Work” on page 5-11.
Data Types: struct

Output Arguments

x — Solution
real vector

Solution, returned as a vector that minimizes the norm of C*x-d subject to all bounds
and linear constraints.

resnorm — Objective value
real scalar

Objective value, returned as the scalar value norm(C*x-d)^2.

residual — Solution residuals
real vector

Solution residuals, returned as the vector C*x-d.

exitflag — Algorithm stopping condition
integer

 lsqlin

14-235

Algorithm stopping condition, returned as an integer identifying the reason the
algorithm stopped. The following lists the values of exitflag and the corresponding
reasons lsqlin stopped.

1 Function converged to a solution x.
3 Change in the residual was smaller than the specified

tolerance.
0 Number of iterations exceeded options.MaxIter.
-2 The problem is infeasible.
-4 Ill-conditioning prevents further optimization.
-7 Magnitude of search direction became too small. No further

progress could be made.

The exit message for the interior-point algorithm can give more details on the reason
lsqlin stopped, such as exceeding a tolerance. See “Exit Flags and Exit Messages” on
page 3-3.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the
optimization process.

iterations Number of iterations the solver took.
algorithm One of these algorithms:

• 'interior-point'

• 'active-set'

• 'trust-region-reflective'

constrviolation Constraint violation that is positive for violated
constraints (not returned for the 'trust-region-
reflective' algorithm).

constrviolation = max([0;norm(Aeq*x-

beq, inf);(lb-x);(x-ub);(A*x-b)])

message Exit message.

14 Functions — Alphabetical List

14-236

firstorderopt First-order optimality at the solution. See “First-
Order Optimality Measure” on page 3-11.

cgiterations Number of conjugate gradient iterations the
solver performed. Nonempty only for the 'trust-
region-reflective' algorithm.

See “Output Structures” on page 3-24.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields.

lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities

See “Lagrange Multiplier Structures” on page 3-25.

More About

Tips

• For problems with no constraints, you can use \ (matrix left division). When you have
no constraints, lsqlin returns x = C\d.

• Because the problem being solved is always convex, lsqlin finds a global, although
not necessarily unique, solution.

• Better numerical results are likely if you specify equalities explicitly, using Aeq and
beq, instead of implicitly, using lb and ub.

• The trust-region-reflective algorithm does not allow equal upper and lower
bounds. Use another algorithm for this case.

• If the specified input bounds for a problem are inconsistent, the output x is x0 and the
outputs resnorm and residual are [].

• You can solve some large structured problems, including those where the C matrix
is too large to fit in memory, using the trust-region-reflective algorithm with

 lsqlin

14-237

a Jacobian multiply function. For information, see trust-region-reflective
Algorithm Options.

Algorithms

Trust-Region-Reflective Algorithm

When the problem given to lsqlin has only upper and lower bounds; that is, no linear
inequalities or equalities are specified, and the matrix C has at least as many rows
as columns, the default algorithm is trust-region-reflective. This method is a
subspace trust-region method based on the interior-reflective Newton method described
in [1]. Each iteration involves the approximate solution of a large linear system using the
method of preconditioned conjugate gradients (PCG). See “Trust-Region-Reflective Least
Squares” on page 10-3, and in particular “Large Scale Linear Least Squares” on page
10-6.

Active-Set Algorithm

lsqlin uses the active-set algorithm when you specify it with optimoptions, or
when you give linear inequalities or equalities. The algorithm is based on quadprog,
which uses an active set method similar to that described in [2]. It finds an initial
feasible solution by first solving a linear programming problem. See “active-set
quadprog Algorithm” on page 9-11.

Interior-Point Algorithm

The 'interior-point' algorithm is based on the quadprog 'interior-point-
convex' algorithm. See “Interior-Point Linear Least Squares” on page 10-7.

References

[1] Coleman, T. F. and Y. Li. “A Reflective Newton Method for Minimizing a Quadratic
Function Subject to Bounds on Some of the Variables,” SIAM Journal on
Optimization, Vol. 6, Number 4, pp. 1040–1058, 1996.

[2] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization, Academic Press,
London, UK, 1981.

• “Least-Squares (Model Fitting) Algorithms” on page 10-2

14 Functions — Alphabetical List

14-238

See Also
\ | lsqnonneg | optimtool | quadprog

Introduced before R2006a

 lsqnonlin

14-239

lsqnonlin

Solve nonlinear least-squares (nonlinear data-fitting) problems

Nonlinear least-squares solver

Solves nonlinear least-squares curve fitting problems of the form

min () min () () ... ()
x x

nf x f x f x f x
2

2
1

2
2

2 2
= + + +()

with optional lower and upper bounds lb and ub on the components of x.

x, lb, and ub can be vectors or matrices; see “Matrix Arguments” on page 2-30.

Rather than compute the value f x()
2

2 (the sum of squares), lsqnonlin requires the
user-defined function to compute the vector-valued function

f x

f x

f x

f xn

()

()

()

()

.=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2

M

Syntax

x = lsqnonlin(fun,x0)

x = lsqnonlin(fun,x0,lb,ub)

x = lsqnonlin(fun,x0,lb,ub,options)

x = lsqnonlin(problem)

[x,resnorm] = lsqnonlin(___)

[x,resnorm,residual,exitflag,output] = lsqnonlin(___)

[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqnonlin(___)

14 Functions — Alphabetical List

14-240

Description

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum of the sum of
squares of the functions described in fun. The function fun should return a vector of
values and not the sum of squares of the values. (The algorithm implicitly computes the
sum of squares of the components of fun(x).)

Note: “Passing Extra Parameters” on page 2-50 explains how to pass extra parameters to
the vector function fun(x), if necessary.

x = lsqnonlin(fun,x0,lb,ub) defines a set of lower and upper bounds on the design
variables in x, so that the solution is always in the range lb ≤ x ≤ ub. You can fix the
solution component x(i) by specifying lb(i) = ub(i).

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the interior of the
box defined by the bounds. Components that respect the bounds are not changed.

x = lsqnonlin(fun,x0,lb,ub,options) minimizes with the optimization options
specified in options. Use optimoptions to set these options. Pass empty matrices for
lb and ub if no bounds exist.

x = lsqnonlin(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-251. Create the problem
structure by exporting a problem from Optimization app, as described in “Exporting Your
Work” on page 5-11.

[x,resnorm] = lsqnonlin(___), for any input arguments, returns the value of the
squared 2-norm of the residual at x: sum(fun(x).^2).

[x,resnorm,residual,exitflag,output] = lsqnonlin(___) additionally
returns the value of the residual fun(x) at the solution x, a value exitflag that
describes the exit condition, and a structure output that contains information about the
optimization process.

 lsqnonlin

14-241

[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqnonlin(___) additionally returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x, and the Jacobian of fun at the solution x.

Examples

Fit a Simple Exponential

Fit a simple exponential decay curve to data.

Generate data from an exponential decay model plus noise. The model is

with ranging from 0 through 3, and normally distributed noise with mean 0 and
standard deviation 0.05.

rng default % for reproducibility

d = linspace(0,3);

y = exp(-1.3*d) + 0.05*randn(size(d));

The problem is: given the data (d, y), find the exponential decay rate that best fits the
data.

Create an anonymous function that takes a value of the exponential decay rate and
returns a vector of differences from the model with that decay rate and the data.

fun = @(r)exp(-d*r)-y;

Find the value of the optimal decay rate. Arbitrarily choose an initial guess x0 = 4.

x0 = 4;

x = lsqnonlin(fun,x0)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

14 Functions — Alphabetical List

14-242

x =

 1.2645

Plot the data and the best-fitting exponential curve.

plot(d,y,'ko',d,exp(-x*d),'b-')

legend('Data','Best fit')

xlabel('t')

ylabel('exp(-tx)')

Fit a Problem with Bound Constraints

Find the best-fitting model when some of the fitting parameters have bounds.

 lsqnonlin

14-243

Find a centering and scaling that best fit the function

to the standard normal density,

Create a vector t of data points, and the corresponding normal density at those points.

t = linspace(-4,4);

y = 1/sqrt(2*pi)*exp(-t.^2/2);

Create a function that evaluates the difference between the centered and scaled function
from the normal y, with x(1) as the scaling and x(2) as the centering .

fun = @(x)x(1)*exp(-t).*exp(-exp(-(t-x(2)))) - y;

Find the optimal fit starting from x0 = [1/2,0], with the scaling between 1/2 and 3/2,
and the centering between -1 and 3.

lb = [1/2,-1];

ub = [3/2,3];

x0 = [1/2,0];

x = lsqnonlin(fun,x0,lb,ub)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

x =

 0.8231 -0.2444

Plot the two functions to see the quality of the fit.

14 Functions — Alphabetical List

14-244

plot(t,y,'r-',t,fun(x)+y,'b-')

xlabel('t')

legend('Normal density','Fitted function')

Nonlinear Least Squares with Nondefault Options

Compare the results of a data-fitting problem when using different lsqnonlin
algorithms.

Suppose that you have observation time data xdata and observed response data ydata,
and you want to find parameters and to fit a model of the form

 lsqnonlin

14-245

Input the observation times and responses.

xdata = ...

 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...

 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model. The model computes a vector of differences
between predicted values and observed values.

fun = @(x)x(1)*exp(x(2)*xdata)-ydata;

Fit the model using the starting point x0 = [100,-1]. First, use the default 'trust-
region-reflective' algorithm.

x0 = [100,-1];

options = optimoptions(@lsqnonlin,'Algorithm','trust-region-reflective');

x = lsqnonlin(fun,x0,[],[],options)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

x =

 498.8309 -0.1013

See if there is any difference using the 'levenberg-marquardt algorithm.

options.Algorithm = 'levenberg-marquardt';

x = lsqnonlin(fun,x0,[],[],options)

Local minimum possible.

lsqnonlin stopped because the relative size of the current step is less than

the default value of the step size tolerance.

14 Functions — Alphabetical List

14-246

x =

 498.8309 -0.1013

The two algorithms found the same solution. Plot the solution and the data.

plot(xdata,ydata,'ko')

hold on

tlist = linspace(xdata(1),xdata(end));

plot(tlist,x(1)*exp(x(2)*tlist),'b-')

xlabel xdata

ylabel ydata

title('Exponential Fit to Data')

legend('Data','Exponential Fit')

hold off

 lsqnonlin

14-247

Nonlinear Least Squares Solution and Residual Norm

Find the x that minimizes

2 2 1 2

2

1

10

+ - -()
=

Â k e e
kx kx

k

,

and find the value of the minimal sum of squares.

Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user-
defined function, the function passed to lsqnonlin should instead compute the vector-
valued function

14 Functions — Alphabetical List

14-248

F x k e ek
kx kx() ,= + - -2 2 1 2

for k = 1 to 10 (that is, F should have 10 components).

First, write a file to compute the 10-component vector F.

function F = myfun(x)

k = 1:10;

F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Find the minimizing point and the minimum value, starting at the point x0 =
[0.3,0.4].

x0 = [0.3,0.4];

[x,resnorm] = lsqnonlin(@myfun,x0);

After about 24 function evaluations, this example gives the solution

x,resnorm

x =

 0.2578 0.2578

resnorm =

 124.3622

Examine the Solution Process

Examine the solution process both as it occurs (by setting the Display option to 'iter')
and afterwards (by examining the output structure).

Suppose that you have observation time data xdata and observed response data ydata,
and you want to find parameters and to fit a model of the form

Input the observation times and responses.

xdata = ...

 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...

 lsqnonlin

14-249

 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model. The model computes a vector of differences
between predicted values and observed values.

fun = @(x)x(1)*exp(x(2)*xdata)-ydata;

Fit the model using the starting point x0 = [100,-1]. Examine the solution process
by setting the Display option to 'iter'. Obtain an output structure to obtain more
information about the solution process.

x0 = [100,-1];

options = optimoptions('lsqnonlin','Display','iter');

[x,resnorm,residual,exitflag,output] = lsqnonlin(fun,x0,[],[],options);

 Norm of First-order

 Iteration Func-count f(x) step optimality

 0 3 359677 2.88e+04

User objective function returned Inf; trying a new point...

 1 6 359677 11.6976 2.88e+04

 2 9 321395 0.5 4.97e+04

 3 12 321395 1 4.97e+04

 4 15 292253 0.25 7.06e+04

 5 18 292253 0.5 7.06e+04

 6 21 270350 0.125 1.15e+05

 7 24 270350 0.25 1.15e+05

 8 27 252777 0.0625 1.63e+05

 9 30 252777 0.125 1.63e+05

 10 33 243877 0.03125 7.48e+04

 11 36 243660 0.0625 8.7e+04

 12 39 243276 0.0625 2e+04

 13 42 243174 0.0625 1.14e+04

 14 45 242999 0.125 5.1e+03

 15 48 242661 0.25 2.04e+03

 16 51 241987 0.5 1.91e+03

 17 54 240643 1 1.04e+03

 18 57 237971 2 3.36e+03

 19 60 232686 4 6.04e+03

 20 63 222354 8 1.2e+04

 21 66 202592 16 2.25e+04

 22 69 166443 32 4.05e+04

 23 72 106320 64 6.68e+04

 24 75 28704.7 128 8.31e+04

 25 78 89.7947 140.674 2.22e+04

14 Functions — Alphabetical List

14-250

 26 81 9.57381 2.02599 684

 27 84 9.50489 0.0619927 2.27

 28 87 9.50489 0.00046226 0.0114

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the default value of the function tolerance.

Examine the output structure to obtain more information about the solution process.

output

output =

 firstorderopt: 0.0114

 iterations: 28

 funcCount: 87

 cgiterations: 0

 algorithm: 'trust-region-reflective'

 stepsize: 4.6226e-04

 message: 'Local minimum possible....'

For comparison, set the Algorithm option to 'levenberg-marquardt'.

options.Algorithm = 'levenberg-marquardt';

[x,resnorm,residual,exitflag,output] = lsqnonlin(fun,x0,[],[],options);

 First-Order Norm of

 Iteration Func-count Residual optimality Lambda step

 0 3 359677 2.88e+04 0.01

User objective function returned Inf; trying a new point...

 1 13 340761 3.91e+04 100000 0.280777

 2 16 304661 5.97e+04 10000 0.373146

 3 21 297292 6.55e+04 1e+06 0.0589933

 4 24 288240 7.57e+04 100000 0.0645444

 5 28 275407 1.01e+05 1e+06 0.0741266

 6 31 249954 1.62e+05 100000 0.094571

 7 36 245896 1.35e+05 1e+07 0.0133606

 8 39 243846 7.26e+04 1e+06 0.0094431

 lsqnonlin

14-251

 9 42 243568 5.66e+04 100000 0.0082162

 10 45 243424 1.61e+04 10000 0.00777935

 11 48 243322 8.8e+03 1000 0.0673933

 12 51 242408 5.1e+03 100 0.675209

 13 54 233628 1.05e+04 10 6.59804

 14 57 169089 8.51e+04 1 54.6992

 15 60 30814.7 1.54e+05 0.1 196.939

 16 63 147.496 8e+03 0.01 129.795

 17 66 9.51503 117 0.001 9.96069

 18 69 9.50489 0.0714 0.0001 0.080486

 19 72 9.50489 4.86e-05 1e-05 5.07037e-05

Local minimum possible.

lsqnonlin stopped because the relative size of the current step is less than

the default value of the step size tolerance.

The 'levenberg-marquardt' converged with fewer iterations, but almost as many
function evaluations:

output

output =

 iterations: 19

 funcCount: 72

 stepsize: 5.0704e-05

 cgiterations: []

 firstorderopt: 4.8597e-05

 algorithm: 'levenberg-marquardt'

 message: 'Local minimum possible....'

• “Nonlinear Least Squares (Curve Fitting)”

Input Arguments

fun — Function whose sum of squares is minimized
function handle | name of function

14 Functions — Alphabetical List

14-252

Function whose sum of squares is minimized, specified as a function handle or the
name of a function. fun is a function that accepts a vector x and returns a vector F, the
objective functions evaluated at x. The function fun can be specified as a function handle
to a file:

x = lsqnonlin(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = lsqnonlin(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a vector using
linear indexing.

Note The sum of squares should not be formed explicitly. Instead, your function should
return a vector of function values. See “Examples” on page 14- .

If the Jacobian can also be computed and the Jacobian option is 'on', set by

options = optimoptions('lsqnonlin','Jacobian','on')

then the function fun must return a second output argument with the Jacobian value J
(a matrix) at x. By checking the value of nargout, the function can avoid computing J
when fun is called with only one output argument (in the case where the optimization
algorithm only needs the value of F but not J).
function [F,J] = myfun(x)

F = ... % Objective function values at x

if nargout > 1 % Two output arguments

 J = ... % Jacobian of the function evaluated at x

end

If fun returns a vector (matrix) of m components and x has length n, where n is the
length of x0, the Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative of
F(i) with respect to x(j). (The Jacobian J is the transpose of the gradient of F.)

Example: @(x)cos(x).*exp(-x)

 lsqnonlin

14-253

Data Types: char | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements
in, and size of, x0 to determine the number and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of lb, then lb specifies that
x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that
x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all x-components are positive, lb = zeros(size(x0))

Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is
equal to that of ub, then ub specifies that
x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that
x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all x-components are less than one, ub = ones(size(x0))

Data Types: double

14 Functions — Alphabetical List

14-254

options — Optimization options
output of optimoptions | structure as optimset returns

Optimization options, specified as the output of optimoptions or a structure as
optimset returns.

Some options apply to all algorithms, and others are relevant for particular algorithms.
See “Optimization Options Reference” on page 13-7 for detailed information.

All Algorithms
Algorithm Choose between 'trust-region-reflective' (default)

and 'levenberg-marquardt'. Set the initial Levenberg-
Marquardt parameter λ by setting Algorithm to a cell array
such as {'levenberg-marquardt',.005}. The default
λ = 0.01.

The Algorithm option specifies a preference for which
algorithm to use. It is only a preference, because certain
conditions must be met to use each algorithm. For the trust-
region-reflective algorithm, the nonlinear system of equations
cannot be underdetermined; that is, the number of equations
(the number of elements of F returned by fun) must be at
least as many as the length of x. The Levenberg-Marquardt
algorithm does not handle bound constraints. For more
information on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradients of objective
or constraints) to finite-differencing derivatives. Choices are
'off' (default) or 'on'.

Diagnostics Display diagnostic information about the function to be
minimized or solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a
positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a
positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-16):

• 'off' or 'none' displays no output.

 lsqnonlin

14-255

• 'iter' displays output at each iteration, and gives the
default exit message.

• 'iter-detailed' displays output at each iteration, and
gives the technical exit message.

• 'final' (default) displays just the final output, and gives
the default exit message.

• 'final-detailed' displays just the final output, and
gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor for finite differences. When
you set FinDiffRelStep to a vector v, forward finite
differences steps delta are
delta = v.*sign′(x).*max(abs(x),TypicalX);
where sign′(x) = sign(x) except sign′(0) = 1. Central
finite differences are
delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The default is
sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

FinDiffType Finite differences, used to estimate gradients, are either
'forward' (default), or 'central' (centered). 'central'
takes twice as many function evaluations, but should be more
accurate.

The algorithm is careful to obey bounds when estimating
both types of finite differences. So, for example, it could
take a backward, rather than a forward, difference to avoid
evaluating at a point outside bounds.

FunValCheck Check whether function values are valid. 'on' displays an
error when the function returns a value that is complex, Inf,
or NaN. The default 'off' displays no error.

Jacobian If 'off' (default), the solver approximates the Jacobian
using finite differences. If 'on', the solver uses a user-defined
Jacobian (defined in fun), or Jacobian information (when
using JacobMult), for the objective function.

14 Functions — Alphabetical List

14-256

MaxFunEvals Maximum number of function evaluations allowed, a
positive integer. The default is 100*numberOfVariables.
See “Tolerances and Stopping Criteria” on page 2-61 and
“Iterations and Function Counts” on page 3-10.

MaxIter Maximum number of iterations allowed, a positive integer.
The default is 400. See “Tolerances and Stopping Criteria” on
page 2-61 and “Iterations and Function Counts” on page 3-10.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either as a
function handle or as a cell array of function handles. The
default is none ([]). See “Output Function” on page 13-20.

PlotFcns Plots various measures of progress while the algorithm
executes; select from predefined plots or write your own. Pass
a function handle or a cell array of function handles. The
default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.
• @optimplotresnorm plots the norm of the residuals.
• @optimplotstepsize plots the step size.
• @optimplotfirstorderopt plots the first-order

optimality measure.

For information on writing a custom plot function, see “Plot
Functions” on page 13-29.

TolFun Termination tolerance on the function value, a positive scalar.
The default is 1e-6. See “Tolerances and Stopping Criteria”
on page 2-61.

TolX Termination tolerance on x, a positive scalar. The default is
1e-6. See “Tolerances and Stopping Criteria” on page 2-61.

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point. The
default value is ones(numberofvariables,1). The solver
uses TypicalX for scaling finite differences for gradient
estimation.

 lsqnonlin

14-257

Trust-Region-Reflective Algorithm
 JacobMult Function handle for Jacobian multiply function. For large-

scale structured problems, this function computes the
Jacobian matrix product J*Y, J'*Y, or J'*(J*Y) without
actually forming J. The function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains the matrix used to compute J*Y (or
J'*Y, or J'*(J*Y)). The first argument Jinfo must be
the same as the second argument returned by the objective
function fun, for example, by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. flag determines which product to
compute:

• If flag == 0 then W = J'*(J*Y).
• If flag > 0 then W = J*Y.
• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. The solver uses
Jinfo to compute the preconditioner. See “Passing Extra
Parameters” on page 2-50 for information on how to supply
values for any additional parameters jmfun needs.

Note 'Jacobian' must be set to 'on' for the solver to pass
Jinfo from fun to jmfun.

See “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-75 and “Jacobian Multiply Function
with Linear Least Squares” on page 10-26 for similar
examples.

14 Functions — Alphabetical List

14-258

JacobPattern Sparsity pattern of the Jacobian for finite differencing. Set
JacobPattern(i,j) = 1 when fun(i) depends on x(j).
Otherwise, set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have ∂fun(i)/
∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to compute the
Jacobian matrix J in fun, though you can determine (say, by
inspection) when fun(i) depends on x(j). The solver can
approximate J via sparse finite differences when you give
JacobPattern.

If the structure is unknown, do not set JacobPattern. The
default behavior is as if JacobPattern is a dense matrix
of ones. Then the solver computes a full finite-difference
approximation in each iteration. This can be expensive
for large problems, so it is usually better to determine the
sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate
gradient) iterations, a positive scalar. The default is
max(1,numberOfVariables/2). For more information, see
“Large Scale Nonlinear Least Squares” on page 10-5.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative
integer. The default PrecondBandWidth is Inf,
which means a direct factorization (Cholesky) is used
rather than the conjugate gradients (CG). The direct
factorization is computationally more expensive than CG,
but produces a better quality step towards the solution.
Set PrecondBandWidth to 0 for diagonal preconditioning
(upper bandwidth of 0). For some problems, an intermediate
bandwidth reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration, a positive scalar.
The default is 0.1.

Levenberg-Marquardt Algorithm
InitDamping Initial value of the Levenberg-Marquardt parameter, a

positive scalar. Default is 1e-2. For details, see “Levenberg-
Marquardt Method” on page 10-7.

 lsqnonlin

14-259

ScaleProblem 'Jacobian' can sometimes improve the convergence of a
poorly scaled problem; the default is 'none'.

Example: options = optimoptions('lsqnonlin','Jacobian','on')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry

objective Objective function
x0 Initial point for x
lb Vector of lower bounds
ub Vector of upper bounds
solver 'lsqnonlin'

options Options created with optimoptions

You must supply at least the objective, x0, solver, and options fields in the
problem structure.

The simplest way of obtaining a problem structure is to export the problem from the
Optimization app.
Data Types: struct

Output Arguments

x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size
of x0. Typically, x is a local solution to the problem when exitflag is positive. For
information on the quality of the solution, see “When the Solver Succeeds” on page 4-22.

resnorm — Norm of the residual
nonnegative real

14 Functions — Alphabetical List

14-260

Norm of the residual, returned as a nonnegative real. resnorm is the squared 2-norm of
the residual at x: sum(fun(x).^2).

residual — Value of objective function at solution
vector

Value of objective function at solution, returned as a vector. In general, residual =
fun(x).

exitflag — Reason the solver stopped
integer

Reason the solver stopped, returned as an integer.

1 Function converged to a solution x.
2 Change in x was less than the specified tolerance.
3 Change in the residual was less than the specified

tolerance.
4 Magnitude of search direction was smaller than the

specified tolerance.
0 Number of iterations exceeded options.MaxIter

or number of function evaluations exceeded
options.MaxFunEvals.

-1 Output function terminated the algorithm.
-2 Problem is infeasible: the bounds lb and ub are

inconsistent.
-4 Line search could not sufficiently decrease the residual

along the current search direction.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

firstorderopt Measure of first-order optimality
iterations Number of iterations taken
funcCount The number of function evaluations

 lsqnonlin

14-261

cgiterations Total number of PCG iterations (trust-region-reflective
algorithm only)

stepsize Final displacement in x
algorithm Optimization algorithm used
message Exit message

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with fields:

lower Lower bounds lb
upper Upper bounds ub

jacobian — Jacobian at the solution
real matrix

Jacobian at the solution, returned as a real matrix. jacobian(i,j) is the partial
derivative of fun(i) with respect to x(j) at the solution x.

Limitations

• The Levenberg-Marquardt algorithm does not handle bound constraints.
• The trust-region-reflective algorithm does not solve underdetermined systems; it

requires that the number of equations, i.e., the row dimension of F, be at least as
great as the number of variables. In the underdetermined case, lsqnonlin uses the
Levenberg-Marquardt algorithm.

Since the trust-region-reflective algorithm does not handle underdetermined systems
and the Levenberg-Marquardt does not handle bound constraints, problems that have
both of these characteristics cannot be solved by lsqnonlin.

• lsqnonlin can solve complex-valued problems directly with the levenberg-
marquardt algorithm. However, this algorithm does not accept bound constraints.
For a complex problem with bound constraints, split the variables into real and
imaginary parts, and use the trust-region-reflective algorithm. See “Fit a
Model to Complex-Valued Data” on page 10-33.

14 Functions — Alphabetical List

14-262

• The preconditioner computation used in the preconditioned conjugate gradient part
of the trust-region-reflective method forms JTJ (where J is the Jacobian matrix)
before computing the preconditioner. Therefore, a row of J with many nonzeros, which
results in a nearly dense product JTJ, can lead to a costly solution process for large
problems.

• If components of x have no upper (or lower) bounds, lsqnonlin prefers that the
corresponding components of ub (or lb) be set to inf (or -inf for lower bounds) as
opposed to an arbitrary but very large positive (or negative for lower bounds) number.

You can use the trust-region reflective algorithm in lsqnonlin, lsqcurvefit, and
fsolve with small- to medium-scale problems without computing the Jacobian in fun or
providing the Jacobian sparsity pattern. (This also applies to using fmincon or fminunc
without computing the Hessian or supplying the Hessian sparsity pattern.) How small is
small- to medium-scale? No absolute answer is available, as it depends on the amount of
virtual memory in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command
J = sparse(ones(m,n)) causes an Out of memory error on your machine, then this
is certainly too large a problem. If it does not result in an error, the problem might still
be too large. You can find out only by running it and seeing if MATLAB runs within the
amount of virtual memory available on your system.

More About

Algorithms

The Levenberg-Marquardt and trust-region-reflective methods are based on the
nonlinear least-squares algorithms also used in fsolve.

• The default trust-region-reflective algorithm is a subspace trust-region method and
is based on the interior-reflective Newton method described in [1] and [2]. Each
iteration involves the approximate solution of a large linear system using the method
of preconditioned conjugate gradients (PCG). See “Trust-Region-Reflective Least
Squares” on page 10-3.

• The Levenberg-Marquardt method is described in references [4], [5], and [6]. See
“Levenberg-Marquardt Method” on page 10-7.

• “Optimization Problem Setup”
• “Least-Squares (Model Fitting) Algorithms” on page 10-2

 lsqnonlin

14-263

References

[1] Coleman, T.F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds.” SIAM Journal on Optimization, Vol. 6, 1996,
pp. 418–445.

[2] Coleman, T.F. and Y. Li. “On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds.” Mathematical
Programming, Vol. 67, Number 2, 1994, pp. 189–224.

[3] Dennis, J. E. Jr. “Nonlinear Least-Squares.” State of the Art in Numerical Analysis,
ed. D. Jacobs, Academic Press, pp. 269–312.

[4] Levenberg, K. “A Method for the Solution of Certain Problems in Least-Squares.”
Quarterly Applied Mathematics 2, 1944, pp. 164–168.

[5] Marquardt, D. “An Algorithm for Least-squares Estimation of Nonlinear Parameters.”
SIAM Journal Applied Mathematics, Vol. 11, 1963, pp. 431–441.

[6] Moré, J. J. “The Levenberg-Marquardt Algorithm: Implementation and Theory.”
Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630,
Springer Verlag, 1977, pp. 105–116.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK 1. Argonne
National Laboratory, Rept. ANL–80–74, 1980.

[8] Powell, M. J. D. “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic
Equations.” Numerical Methods for Nonlinear Algebraic Equations, P.
Rabinowitz, ed., Ch.7, 1970.

See Also
fsolve | lsqcurvefit | optimoptions

Introduced before R2006a

14 Functions — Alphabetical List

14-264

lsqnonneg
Solve nonnegative least-squares constraint problem

Equation

Solves nonnegative least-squares curve fitting problems of the form

min , .
x

C x d x◊ - ≥
2

2
0 where

Syntax

x = lsqnonneg(C,d)

x = lsqnonneg(C,d,options)

x = lsqnonneg(problem)

[x,resnorm] = lsqnonneg(...)

[x,resnorm,residual] = lsqnonneg(...)

[x,resnorm,residual,exitflag] = lsqnonneg(...)

[x,resnorm,residual,exitflag,output] = lsqnonneg(...)

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description

x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject to
x ≥ 0. C and d must be real.

x = lsqnonneg(C,d,options) minimizes with the optimization options specified in
the structure options. Use optimset to set these options.

x = lsqnonneg(problem) finds the minimum for problem, where problem is a
structure described in “Input Arguments” on page 14-265.

Create the structure problem by exporting a problem from Optimization app, as
described in “Exporting Your Work” on page 5-11.

 lsqnonneg

14-265

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of the
residual, norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual d-C*x.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value exitflag
that describes the exit condition of lsqnonneg.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a structure
output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...) returns
the Lagrange multipliers in the vector lambda.

Input Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments passed
into lsqnonneg. This section provides function-specific details for options and
problem:

Use optimset to set or change the values of these fields in the
options structure, options. See “Optimization Options Reference”
on page 13-7 for detailed information.
Display Level of display:

• 'off' or 'none' displays no output.
• 'final' displays just the final output.
• 'notify' (default) displays output only if the

function does not converge.

options

TolX Termination tolerance on x, a positive scalar. The
default is 10*eps*norm(C,1)*length(C). See
“Tolerances and Stopping Criteria” on page 2-61.

C Matrix
d Vector
solver 'lsqnonneg'

problem

options Options structure created using optimset

14 Functions — Alphabetical List

14-266

Output Arguments

“Function Arguments” on page 13-2 contains general descriptions of arguments returned
by lsqnonneg. This section provides function-specific details for exitflag, lambda, and
output:

Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.
1 Function converged to a solution x.

exitflag

0 Number of iterations exceeded
options.MaxIter.

lambda Vector containing the Lagrange multipliers: lambda(i)≤0
when x(i) is (approximately) 0, and lambda(i) is
(approximately) 0 when x(i)>0.
Structure containing information about the optimization.
The fields are
iterations Number of iterations taken
algorithm 'active-set'

output

message Exit message

Examples

Compare the unconstrained least-squares solution to the lsqnonneg solution for a 4-
by-2 problem.

C = [

 0.0372 0.2869

 0.6861 0.7071

 0.6233 0.6245

 0.6344 0.6170];

d = [

 0.8587

 0.1781

 0.0747

 0.8405];

 lsqnonneg

14-267

[C\d, lsqnonneg(C,d)]

ans =

 -2.5627 0

 3.1108 0.6929

[norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)]

ans =

 0.6674 0.9118

The solution from lsqnonneg does not fit as well as the least-squares solution. However,
the nonnegative least-squares solution has no negative components.

Notes

The nonnegative least-squares problem is a subset of the constrained linear least-squares
problem. Thus, when C has more rows than columns (i.e., the system is overdetermined),

[x,resnorm,residual,exitflag,output,lambda] = ...

 lsqnonneg(C,d)

is equivalent to

[m,n] = size(C);

[x,resnorm,residual,exitflag,output,lambda_lsqlin] = ...

 lsqlin(C,d,-eye(n,n),zeros(n,1));

except that lambda = -lambda_lsqlin.ineqlin.

For problems greater than order 20, lsqlin might be faster than lsqnonneg; otherwise
lsqnonneg is generally more efficient.

More About

Algorithms

lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set of
possible basis vectors and computes the associated dual vector lambda. It then selects
the basis vector corresponding to the maximum value in lambda in order to swap
it out of the basis in exchange for another possible candidate. This continues until
lambda ≤ 0.

14 Functions — Alphabetical List

14-268

References

[1] Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems, Prentice-Hall,
Chapter 23, p. 161, 1974.

See Also
\ | lsqlin | optimset | optimtool

 mpsread

14-269

mpsread

Read MPS file for LP and MILP optimization data

Syntax

problem = mpsread(mpsfile)

Description

problem = mpsread(mpsfile) reads data for linear programming (LP) and mixed-
integer linear programming (MILP) problems. It returns the data in a structure that the
intlinprog or linprog solvers accept.

Note: mpsread does not support semicontinuous constraints or SOS constraints.

Examples

Import and Run an MPS File

Load an mps file and solve the problem it describes.

Load the eil33.2.mps file from a public repository. View the problem type.

gunzip('http://miplib.zib.de/download/eil33-2.mps.gz')

problem = mpsread('eil33-2.mps')

problem =

 f: [4516x1 double]

 Aineq: [0x4516 double]

 bineq: [0x1 double]

 Aeq: [32x4516 double]

 beq: [32x1 double]

 lb: [4516x1 double]

14 Functions — Alphabetical List

14-270

 ub: [4516x1 double]

 intcon: [4516x1 double]

 solver: 'intlinprog'

 options: [1x1 optim.options.Intlinprog]

Notice that problem.intcon is not empty, and problem.solver is 'intlinprog'.
The problem is an integer linear programming problem.

Change the options to suppress iterative display and to generate a plot as the solver
progresses.

options = optimoptions('intlinprog','Display','final','PlotFcns',@optimplotmilp);

problem.options = options;

Solve the problem by calling intlinprog.

[x,fval,exitflag,output] = intlinprog(problem);

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the optimal

value, options.TolGapRel = 0.0001 (the default value). The intcon variables are

integer within tolerance, options.TolInteger = 1e-05 (the default value).

 mpsread

14-271

Input Arguments

mpsfile — Path to MPS file
string

Path to MPS file, specified as a string. mpsfile should be a file in the MPS format.

Example: 'documents/optimization/milpproblem.mps'

Data Types: char

http://lpsolve.sourceforge.net/5.5/mps-format.htm

14 Functions — Alphabetical List

14-272

Output Arguments

problem — Problem structure
structure

Problem structure, returned as a structure with fields:

f Vector representing objective f'*x
intcon Vector indicating variables that take integer values (empty for

LP, nonempty for MILP)
Aineq Matrix in linear inequality constraints Aineq*x ≤ bineq
bineq Vector in linear inequality constraints Aineq*x ≤ bineq
Aeq Matrix in linear equality constraints Aeq*x = beq
beq Vector in linear equality constraints Aeq*x = beq
lb Vector of lower bounds
ub Vector of upper bounds
solver 'intlinprog' (if intcon is nonempty), or 'linprog' (if

intcon is empty)
options Default options, as returned by the command

optimoptions(solver)

mpsread returns problem.Aineq and problem.Aeq as sparse matrices.

More About
• “Linear Programming and Mixed-Integer Linear Programming”

See Also
intlinprog | linprog

Introduced in R2015b

 optimget

14-273

optimget
Optimization options values

Syntax

val = optimget(options,'param')

val = optimget(options,'param',default)

Description

val = optimget(options,'param') returns the value of the specified option in
the optimization options structure options. You need to type only enough leading
characters to define the option name uniquely. Case is ignored for option names.

val = optimget(options,'param',default) returns default if the specified
option is not defined in the optimization options structure options. Note that this form
of the function is used primarily by other optimization functions.

Examples

This statement returns the value of the Display option in the structure called
my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display option in the structure called
my_options (as in the previous example) except that if the Display option is not
defined, it returns the value 'final'.

optnew = optimget(my_options,'Display','final');

See Also
optimset

14 Functions — Alphabetical List

14-274

optimoptions
Create optimization options

Syntax
options = optimoptions(SolverName)

options = optimoptions(SolverName,Name,Value)

options = optimoptions(oldoptions,Name,Value)

options = optimoptions(SolverName,oldoptions)

Description
options = optimoptions(SolverName) returns a set of default options for the
SolverName solver.

options = optimoptions(SolverName,Name,Value) returns options with the
named parameters altered with the specified values.

options = optimoptions(oldoptions,Name,Value) returns a copy of oldoptions
with the named parameters altered with the specified values.

options = optimoptions(SolverName,oldoptions) returns default options for the
SolverName solver, and copies the applicable options in oldoptions to options.

Examples
Create Default Options

Create default options for the fmincon solver.

options = optimoptions('fmincon')

options =

 fmincon options:

 optimoptions

14-275

 Options used by current Algorithm ('interior-point'):

 (Other available algorithms: 'active-set', 'sqp', 'trust-region-reflective')

 Set by user:

 No options set by user.

 Default:

 Algorithm: 'interior-point'

 AlwaysHonorConstraints: 'bounds'

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 HessFcn: []

 Hessian: 'bfgs'

 HessMult: []

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

 MaxFunEvals: 3000

 MaxIter: 1000

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 SubproblemAlgorithm: 'ldl-factorization'

 TolCon: 1.0000e-06

 TolFun: 1.0000e-06

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

 TolX: 1.0000e-10

 TypicalX: 'ones(numberOfVariables,1)'

 UseParallel: 0

 Options not used by current Algorithm ('interior-point')

 Default:

 HessPattern: 'sparse(ones(numberOfVariables))'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

14 Functions — Alphabetical List

14-276

 MaxSQPIter: '10*max(numberOfVariables,numberOfInequalities+…'

 PrecondBandWidth: 0

 RelLineSrchBnd: []

 RelLineSrchBndDuration: 1

 TolConSQP: 1.0000e-06

 TolPCG: 0.1000

Create Nondefault Options

Create nondefault options for the fmincon solver.

options = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',1500)

options =

 fmincon options:

 Options used by current Algorithm ('sqp'):

 (Other available algorithms: 'active-set', 'interior-point', 'trust-region-reflective')

 Set by user:

 Algorithm: 'sqp'

 MaxIter: 1500

 Default:

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 MaxFunEvals: '100*numberOfVariables'

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolCon: 1.0000e-06

 TolFun: 1.0000e-06

 optimoptions

14-277

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 UseParallel: 0

 Options not used by current Algorithm ('sqp')

 Default:

 AlwaysHonorConstraints: 'bounds'

 HessFcn: []

 HessMult: []

 HessPattern: 'sparse(ones(numberOfVariables))'

 Hessian: 'not applicable'

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 MaxSQPIter: '10*max(numberOfVariables,numberOfInequalities+…'

 PrecondBandWidth: 0

 RelLineSrchBnd: []

 RelLineSrchBndDuration: 1

 SubproblemAlgorithm: 'ldl-factorization'

 TolConSQP: 1.0000e-06

 TolPCG: 0.1000

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

Update Options

Update existing options with new values.

Create options for the lsqnonlin solver.

oldoptions = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt','MaxFunEvals',1500)

oldoptions =

 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):

 (Other available algorithms: 'trust-region-reflective')

 Set by user:

 Algorithm: 'levenberg-marquardt'

14 Functions — Alphabetical List

14-278

 MaxFunEvals: 1500

 Default:

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 InitDamping: 0.0100

 Jacobian: 'off'

 MaxIter: 400

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 Options not used by current Algorithm ('levenberg-marquardt')

 Default:

 JacobMult: []

 JacobPattern: 'sparse(ones(Jrows,Jcols))'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 PrecondBandWidth: Inf

 TolPCG: 0.1000

Increase MaxFunEvals to 2000.

options = optimoptions(oldoptions,'MaxFunEvals',2000)

options =

 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):

 (Other available algorithms: 'trust-region-reflective')

 Set by user:

 Algorithm: 'levenberg-marquardt'

 optimoptions

14-279

 MaxFunEvals: 2000

 Default:

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 InitDamping: 0.0100

 Jacobian: 'off'

 MaxIter: 400

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 Options not used by current Algorithm ('levenberg-marquardt')

 Default:

 JacobMult: []

 JacobPattern: 'sparse(ones(Jrows,Jcols))'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 PrecondBandWidth: Inf

 TolPCG: 0.1000

Use Dot Notation to Update Options

Update existing options with new values by using dot notation.

Create options for the lsqnonlin solver.

options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt','MaxFunEvals',1500)

options =

 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):

14 Functions — Alphabetical List

14-280

 (Other available algorithms: 'trust-region-reflective')

 Set by user:

 Algorithm: 'levenberg-marquardt'

 MaxFunEvals: 1500

 Default:

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 InitDamping: 0.0100

 Jacobian: 'off'

 MaxIter: 400

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 Options not used by current Algorithm ('levenberg-marquardt')

 Default:

 JacobMult: []

 JacobPattern: 'sparse(ones(Jrows,Jcols))'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 PrecondBandWidth: Inf

 TolPCG: 0.1000

Increase MaxFunEvals to 2000 by using dot notation.

options.MaxFunEvals = 2000

options =

 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):

 optimoptions

14-281

 (Other available algorithms: 'trust-region-reflective')

 Set by user:

 Algorithm: 'levenberg-marquardt'

 MaxFunEvals: 2000

 Default:

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 InitDamping: 0.0100

 Jacobian: 'off'

 MaxIter: 400

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 Options not used by current Algorithm ('levenberg-marquardt')

 Default:

 JacobMult: []

 JacobPattern: 'sparse(ones(Jrows,Jcols))'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 PrecondBandWidth: Inf

 TolPCG: 0.1000

Copy Options to Another Solver

Transfer nondefault options for the fmincon solver to options for the fminunc solver.

Create nondefault options for the fmincon solver.

oldoptions = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',1500)

oldoptions =

14 Functions — Alphabetical List

14-282

 fmincon options:

 Options used by current Algorithm ('sqp'):

 (Other available algorithms: 'active-set', 'interior-point', 'trust-region-reflective')

 Set by user:

 Algorithm: 'sqp'

 MaxIter: 1500

 Default:

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradConstr: 'off'

 GradObj: 'off'

 MaxFunEvals: '100*numberOfVariables'

 ObjectiveLimit: -1.0000e+20

 OutputFcn: []

 PlotFcns: []

 ScaleProblem: 'none'

 TolCon: 1.0000e-06

 TolFun: 1.0000e-06

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 UseParallel: 0

 Options not used by current Algorithm ('sqp')

 Default:

 AlwaysHonorConstraints: 'bounds'

 HessFcn: []

 HessMult: []

 HessPattern: 'sparse(ones(numberOfVariables))'

 Hessian: 'not applicable'

 InitBarrierParam: 0.1000

 InitTrustRegionRadius: 'sqrt(numberOfVariables)'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 MaxProjCGIter: '2*(numberOfVariables-numberOfEqualities)'

 MaxSQPIter: '10*max(numberOfVariables,numberOfInequalities+…'

 optimoptions

14-283

 PrecondBandWidth: 0

 RelLineSrchBnd: []

 RelLineSrchBndDuration: 1

 SubproblemAlgorithm: 'ldl-factorization'

 TolConSQP: 1.0000e-06

 TolPCG: 0.1000

 TolProjCG: 0.0100

 TolProjCGAbs: 1.0000e-10

Transfer the applicable options to the fminunc solver.

options = optimoptions(@fminunc,oldoptions)

options =

 fminunc options:

 Options used by current Algorithm ('trust-region'):

 (Other available algorithms: 'quasi-newton')

 Set by user:

 MaxIter: 1500

 Default:

 Algorithm: 'trust-region'

 DerivativeCheck: 'off'

 Diagnostics: 'off'

 DiffMaxChange: Inf

 DiffMinChange: 0

 Display: 'final'

 FinDiffRelStep: 'sqrt(eps)'

 FinDiffType: 'forward'

 FunValCheck: 'off'

 GradObj: 'off'

 Hessian: 'off'

 HessMult: []

 HessPattern: 'sparse(ones(numberOfVariables))'

 MaxFunEvals: '100*numberOfVariables'

 MaxPCGIter: 'max(1,floor(numberOfVariables/2))'

 OutputFcn: []

 PlotFcns: []

 PrecondBandWidth: 0

14 Functions — Alphabetical List

14-284

 TolFun: 1.0000e-06

 TolPCG: 0.1000

 TolX: 1.0000e-06

 TypicalX: 'ones(numberOfVariables,1)'

 Options not used by current Algorithm ('trust-region')

 Default:

 HessUpdate: 'bfgs'

 ObjectiveLimit: -1.0000e+20

Input Arguments

SolverName — Solver name
string or function handle

Solver name, specified as a string or function handle.
Example: 'fmincon'

Example: @fmincon

Data Types: char | function_handle

oldoptions — Options
options created using optimoptions

Options, specified as an options object. The optimoptions function creates options
objects.
Example: oldoptions = optimoptions(@fminunc)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: optimoptions(@fmincon,'Display','iter','TolFun',1e-10) sets
fmincon options to have iterative display, and to have a TolFun tolerance of 1e-10.

 optimoptions

14-285

For relevant name-value pairs, consult the options table for your solver:

• fgoalattain options
• fmincon options
• fminimax options
• fminunc options
• fseminf options
• fsolve options
• intlinprog options
• linprog options
• lsqcurvefit options
• lsqlin options
• lsqnonlin options
• particleswarm options (in Global Optimization Toolbox)
• quadprog options

Output Arguments
options — Options object
options object

Options object, returned as the options for the SolverName solver.

Alternative Functionality

App

You can set and modify options using the Optimization app (optimtool).

Note: The Optimization app warns that it will be removed in a future release.

More About
• “Set Options”

14 Functions — Alphabetical List

14-286

• “Optimization App” on page 5-2

See Also
optimset | optimtool

Introduced in R2013a

 optimset

14-287

optimset
Create or edit optimization options structure

Syntax

options = optimset('param1',value1,'param2',value2,...)

optimset

options = optimset

options = optimset(optimfun)

options = optimset(oldopts,'param1',value1,...)

options = optimset(oldopts,newopts)

Description

options = optimset('param1',value1,'param2',value2,...) creates an
optimization options structure called options, in which the specified options (param)
have specified values. Any unspecified options are set to [] (options with value
[] indicate to use the default value for that option when you pass options to the
optimization function). It is sufficient to type only enough leading characters to define
the option name uniquely. Case is ignored for option names.

optimset with no input or output arguments displays a complete list of options with
their valid values.

options = optimset (with no input arguments) creates an options structure options
where all fields are set to [].

options = optimset(optimfun) creates an options structure options with all
option names and default values relevant to the optimization function optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of oldopts,
modifying the specified options with the specified values.

options = optimset(oldopts,newopts) combines an existing options structure,
oldopts, with a new options structure, newopts. Any options in newopts with
nonempty values overwrite the corresponding old options in oldopts.

14 Functions — Alphabetical List

14-288

Options

For more information about individual options, including their default values, see the
reference pages for the optimization functions. “Optimization Options Reference” on page
13-7 provides descriptions of optimization options and which functions use them.

Use the command optimset(@solver) or the equivalent optimset solver to see
the default values of relevant optimization options for a solver. Some solvers do not have
a default value, since the default depends on the algorithm. For example, the default
value of the maxIter option in the fmincon solver is 400 for the trust-region-reflective
algorithm, but is 1000 for the interior-point algorithm.

You can also see the default values of all relevant options in the Optimization app. To see
the options:

1 Start the Optimization app, e.g., with the optimtool command.
2 Choose the solver from the Solver menu.
3 Choose the algorithm, if applicable, from the Algorithm menu.
4 Read off the default values within the Options pane.

Examples

This statement creates an optimization options structure called options in which the
Display option is set to 'iter' and the TolFun option is set to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options, changing the value
of the TolX option and storing new values in optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure options that contains all the
option names and default values relevant to the function fminbnd.

options = optimset('fminbnd')

If you only want to see the default values for fminbnd, you can simply type

optimset fminbnd

 optimset

14-289

or equivalently

optimset('fminbnd')

See Also
optimget | optimoptions | optimtool

14 Functions — Alphabetical List

14-290

optimtool

Select solver and optimization options, run problems

optimtool warns that it will be removed in a future release.

Syntax

optimtool

optimtool(optstruct)

optimtool('solver')

Description

optimtool opens the Optimization app. Use the Optimization app to select a solver,
optimization options, and run problems. See “Optimization App” on page 5-2 for a
complete description of the Optimization app.

The Optimization app can be used to run any Optimization Toolbox solver except
intlinprog, and any Global Optimization Toolbox solver except GlobalSearch
and MultiStart. Results can be exported to a file or to the MATLAB workspace as a
structure.

optimtool(optstruct) starts the Optimization app and loads optstruct.
optstruct can be either optimization options or an optimization problem structure.
Create optimization options with the optimoptions or optimset function, or by using
the export option from the Optimization app. Create a problem structure by exporting
the problem from the Optimization app to the MATLAB workspace. If you have Global
Optimization Toolbox, you can create a problem structure for fmincon, fminunc,
lsqnonlin, or lsqcurvefit using the createOptimProblem function.

optimtool('solver') starts the Optimization app with the specified solver, identified
as a string, and the corresponding default options and problem fields. All Optimization
Toolbox and Global Optimization Toolbox solvers are valid inputs to the optimtool
function, except for intlinprog, GlobalSearch, and MultiStart.

 optimtool

14-291

More About
• “Optimization App” on page 5-2
• “Solve a Constrained Nonlinear Problem” on page 1-3

14 Functions — Alphabetical List

14-292

See Also
optimoptions | optimset

 quadprog

14-293

quadprog

Quadratic programming

Syntax

x = quadprog(H,f)

x = quadprog(H,f,A,b)

x = quadprog(H,f,A,b,Aeq,beq)

x = quadprog(H,f,A,b,Aeq,beq,lb,ub)

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

x = quadprog(problem)

[x,fval] = quadprog(H,f,...)

[x,fval,exitflag] = quadprog(H,f,...)

[x,fval,exitflag,output] = quadprog(H,f,...)

[x,fval,exitflag,output,lambda] = quadprog(H,f,...)

Description

Finds a minimum for a problem specified by

min

,

,

.
x

T Tx Hx f x

A x b

Aeq x beq

lb x ub

1

2
+

◊ £

◊ =

£ £

Ï

Ì
Ô

Ó
Ô

 such that

H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

f, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-30.

x = quadprog(H,f) returns a vector x that minimizes 1/2*x'*H*x + f'*x. H must
be positive definite for the problem to have a finite minimum.

x = quadprog(H,f,A,b) minimizes 1/2*x'*H*x + f'*x subject to the restrictions
A*x ≤ b. A is a matrix of doubles, and b is a vector of doubles.

14 Functions — Alphabetical List

14-294

x = quadprog(H,f,A,b,Aeq,beq) solves the preceding problem subject to the
additional restrictions Aeq*x = beq. Aeq is a matrix of doubles, and beq is a vector of
doubles. If no inequalities exist, set A = [] and b = [].

x = quadprog(H,f,A,b,Aeq,beq,lb,ub) solves the preceding problem subject
to the additional restrictions lb ≤ x ≤ ub. lb and ub are vectors of doubles, and
the restrictions hold for each x component. If no equalities exist, set Aeq = [] and
beq = [].

Note: If the specified input bounds for a problem are inconsistent, the output x is x0 and
the output fval is [].

quadprog resets components of x0 that violate the bounds lb ≤ x ≤ ub to the interior
of the box defined by the bounds. quadprog does not change components that respect the
bounds.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) solves the preceding problem starting
from the vector x0. If no bounds exist, set lb = [] and ub = []. Some quadprog
algorithms ignore x0, see “Input Arguments” on page 14-295.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) solves the preceding problem
using the optimization options specified in options. Use optimoptions to create
options. If you do not want to give an initial point, set x0 = [].

x = quadprog(problem) returns the minimum for problem, where problem is
a structure described in “Input Arguments” on page 14-295. Create problem by
exporting a problem using the Optimization app; see “Exporting Your Work” on page
5-11.

[x,fval] = quadprog(H,f,...) returns the value of the objective function at x:

fval = 0.5*x'*H*x + f'*x

[x,fval,exitflag] = quadprog(H,f,...) exitflag, a scalar that describes the
exit condition of quadprog.

[x,fval,exitflag,output] = quadprog(H,f,...) output, a structure that
contains information about the optimization.

[x,fval,exitflag,output,lambda] = quadprog(H,f,...) lambda, a structure
whose fields contain the Lagrange multipliers at the solution x.

 quadprog

14-295

Input Arguments

H

Symmetric matrix of doubles. Represents the quadratic in the expression
1/2*x'*H*x + f'*x.

f

Vector of doubles. Represents the linear term in the expression 1/2*x'*H*x + f'*x.

A

Matrix of doubles. Represents the linear coefficients in the constraints A*x ≤ b.

b

Vector of doubles. Represents the constant vector in the constraints A*x ≤ b.

Aeq

Matrix of doubles. Represents the linear coefficients in the constraints Aeq*x = beq.

beq

Vector of doubles. Represents the constant vector in the constraints Aeq*x = beq.

lb

Vector of doubles. Represents the lower bounds elementwise in lb ≤ x ≤ ub.

ub

Vector of doubles. Represents the upper bounds elementwise in lb ≤ x ≤ ub.

x0

Vector of doubles. Optional. The initial point for some quadprog algorithms:

• active-set

14 Functions — Alphabetical List

14-296

• trust-region-reflective when there are only bound constraints

If you do not give x0, quadprog sets all components of x0 to a point in the interior of
the box defined by the bounds. quadprog ignores x0 for the interior-point-convex
algorithm, and for the trust-region-reflective algorithm with equality constraints.

options

Options created using optimoptions or the Optimization app.

All Algorithms

Algorithm Choose the algorithm:

• 'interior-point-convex' (default)
• 'trust-region-reflective'

• 'active-set' (will be removed in a future release)

The 'trust-region-reflective' algorithm handles
problems with only bounds, or only linear equality constraints,
but not both. The 'interior-point-convex' algorithm
handles only convex problems. For details, see “Choosing the
Algorithm” on page 2-7.

Diagnostics Display diagnostic information about the function to be
minimized or solved. The choices are 'on' or 'off' (default).

Display Level of display (see “Iterative Display” on page 3-16):

• 'off' or 'none' displays no output.
• 'final' displays just the final output (default).

The 'interior-point-convex' algorithm allows additional
values:

• 'iter' gives iterative display.
• 'iter-detailed' gives iterative display with a detailed

exit message.
• 'final-detailed' displays just the final output, with a

detailed exit message.
MaxIter Maximum number of iterations allowed, a positive integer.

 quadprog

14-297

• For a 'trust-region-reflective' equality-constrained
problem, the default value is 2*(numberOfVariables -
numberOfEqualities).

• For all other algorithms and problems, the default value is
200.

All Algorithms Except active-set

TolFun Termination tolerance on the function value, a positive scalar.

• For a 'trust-region-reflective' equality-constrained
problem, the default value is 1e-6.

• For a 'trust-region-reflective' bound-constrained
problem, the default value is 100*eps, about 2.2204e-14.

• For 'interior-point-convex', the default value is 1e-8.
TolX Termination tolerance on x, a positive scalar.

• For 'trust-region-reflective', the default value is
100*eps, about 2.2204e-14.

• For 'interior-point-convex', the default value is 1e-8.

trust-region-reflective Algorithm Only

HessMult Function handle for a Hessian multiply function. For large-
scale structured problems, this function computes the Hessian
matrix product H*Y without actually forming H. The function
has the form

W = hmfun(Hinfo,Y)

where Hinfo and possibly some additional parameters
contain the matrices used to compute H*Y.

See “Quadratic Minimization with Dense, Structured Hessian”
on page 9-19 for an example that uses this option.

MaxPCGIter Maximum number of PCG (preconditioned conjugate
gradient) iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more
information, see “Preconditioned Conjugate Gradient Method”
on page 9-9.

14 Functions — Alphabetical List

14-298

PrecondBandWidth Upper bandwidth of the preconditioner for PCG, a
nonnegative integer. By default, quadprog uses diagonal
preconditioning (upper bandwidth 0). For some problems,
increasing the bandwidth reduces the number of PCG
iterations. Setting PrecondBandWidth to Inf uses a direct
factorization (Cholesky) rather than the conjugate gradients
(CG). The direct factorization is computationally more
expensive than CG, but produces a better quality step toward
the solution.

TolPCG Termination tolerance on the PCG iteration, a positive scalar.
The default is 0.1.

TypicalX Typical x values. The number of elements in TypicalX equals
the number of elements in x0, the starting point. The default
value is ones(numberofvariables,1). quadprog uses
TypicalX internally for scaling. TypicalX has an effect only
when x has unbounded components, and when a TypicalX
value for an unbounded component exceeds 1.

interior-point-convex Algorithm Only

TolCon Tolerance on the constraint violation, a positive scalar. The
default is 1e-8.

problem

Structure encapsulating the quadprog inputs and options:

H Symmetric matrix in 1/2*x'*H*x
f Vector in linear term f'*x
Aineq Matrix in linear inequality constraints Aineq*x ≤ bineq
bineq Vector in linear inequality constraints Aineq*x ≤ bineq
Aeq Matrix in linear equality constraints Aeq*x = beq
beq Vector in linear equality constraints Aeq*x = beq
lb Vector of lower bounds
ub Vector of upper bounds
x0 Initial point for x

 quadprog

14-299

solver 'quadprog'

options Options created using optimoptions or the Optimization
app

Output Arguments

x

Vector that minimizes 1/2*x'*H*x + f'*x subject to all bounds and linear constraints.
x can be a local minimum for nonconvex problems. For convex problems, x is a global
minimum. For more information, see “Local vs. Global Optima” on page 4-26.

fval

Value of 1/2*x'*H*x + f'*x at the solution x, a double.

exitflag

Integer identifying the reason the algorithm terminated. The following lists the values of
exitflag and the corresponding reasons the algorithm terminated:

All Algorithms
1 Function converged to the solution x.
0 Number of iterations exceeded options.MaxIter.
-2 Problem is infeasible.
-3 Problem is unbounded.
interior-point-convex Algorithm
-6 Nonconvex problem detected.
trust-region-reflective Algorithm
3 Change in the objective function value was smaller than

options.TolFun.
-4 Current search direction was not a direction of descent. No

further progress could be made.
active-set Algorithm
4 Local minimizer was found.

14 Functions — Alphabetical List

14-300

-7 Magnitude of search direction became too small. No further
progress could be made. The problem is ill-posed or badly
conditioned.

output

Structure containing information about the optimization. The fields are:

iterations Number of iterations taken
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations (trust-region-

reflective algorithm only)
constrviolation Maximum of constraint functions
firstorderopt Measure of first-order optimality
message Exit message

lambda

Structure containing the Lagrange multipliers at the solution x (separated by constraint
type). The fields are:

lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities

For details, see “Lagrange Multiplier Structures” on page 3-25.

Examples

Solve a simple quadratic programming problem: find values of x that minimize

f x x x x x x x() ,= + - - -

1

2
2 61

2
2
2

1 2 1 2

subject to

 quadprog

14-301

x1 + x2 ≤ 2
–x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3
0 ≤ x1, 0 ≤ x2.

In matrix notation this is

f x x Hx f xT T() ,= +

1

2

where

H f x
x

x
=

-

-

È

Î
Í

˘

˚
˙ =

-

-

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

1 1

1 2

2

6

1

2

, , .

1 Enter the coefficient matrices:

H = [1 -1; -1 2];

f = [-2; -6];

A = [1 1; -1 2; 2 1];

b = [2; 2; 3];

lb = zeros(2,1);

2 Set the options to use the 'interior-point-convex' algorithm with no display:

options = optimoptions('quadprog',...

 'Algorithm','interior-point-convex','Display','off');

3 Call quadprog:

[x,fval,exitflag,output,lambda] = ...

 quadprog(H,f,A,b,[],[],lb,[],[],options);

4 Examine the final point, function value, and exit flag:

 x,fval,exitflag

x =

 0.6667

 1.3333

fval =

 -8.2222

14 Functions — Alphabetical List

14-302

exitflag =

 1

5 An exit flag of 1 means the result is a local minimum. Because H is a positive definite
matrix, this problem is convex, so the minimum is a global minimum. You can see H
is positive definite by noting all its eigenvalues are positive:

eig(H)

ans =

 0.3820

 2.6180

Use the 'interior-point-convex' algorithm to solve a sparse quadratic program.

1 Generate a sparse symmetric matrix for the quadratic form:

v = sparse([1,-.25,0,0,0,0,0,-.25]);

H = gallery('circul',v);

2 Include the linear term for the problem:

f = -4:3;

3 Include the constraint that the sum of the terms in the solution x must be less than
-2:

A = ones(1,8);b = -2;

4 Set options to use the 'interior-point-convex' algorithm and iterative display:

opts = optimoptions('quadprog',...

 'Algorithm','interior-point-convex','Display','iter');

5 Run the quadprog solver and observe the iterations:

[x fval eflag output lambda] = quadprog(H,f,A,b,[],[],[],[],[],opts);

 First-order Total relative

 Iter f(x) Feasibility optimality error

 0 -2.000000e+000 1.000e+001 4.500e+000 1.200e+001

 1 -2.630486e+001 0.000e+000 9.465e-002 9.465e-002

 2 -2.639877e+001 0.000e+000 3.914e-005 3.914e-005

 3 -2.639881e+001 0.000e+000 3.069e-015 6.883e-015

Minimum found that satisfies the constraints.

Optimization completed because the objective function is

 quadprog

14-303

non-decreasing in feasible directions, to within the default value

of the function tolerance, and constraints are satisfied to within

the default value of the constraint tolerance.

6 Examine the solution:

fval,eflag

fval =

 -26.3988

eflag =

 1

For the 'interior-point-convex' algorithm, an exit flag of 1 means the result is
a global minimum.

Alternatives

You can use the Optimization app for quadratic programming. Enter optimtool at
the MATLAB command line, and choose the quadprog - Quadratic programming
solver. For more information, see “Optimization App” on page 5-2.

More About

Algorithms

interior-point-convex

The 'interior-point-convex' algorithm attempts to follow a path that is strictly
inside the constraints. It uses a presolve module to remove redundancies, and to simplify
the problem by solving for components that are straightforward. For more information,
see “interior-point-convex quadprog Algorithm” on page 9-2.

trust-region-reflective

The 'trust-region-reflective' algorithm is a subspace trust-region method
based on the interior-reflective Newton method described in [1]. Each iteration involves
the approximate solution of a large linear system using the method of preconditioned

14 Functions — Alphabetical List

14-304

conjugate gradients (PCG). For more information, see “trust-region-reflective
quadprog Algorithm” on page 9-6.

active-set

quadprog uses an active set method, which is also a projection method, similar to that
described in [2]. It finds an initial feasible solution by first solving a linear programming
problem. For more information, see “active-set quadprog Algorithm” on page 9-11.
• “Optimization Problem Setup”
• “Optimization Results”
• “Quadratic Programming”
• “Mixed-Integer Quadratic Programming Portfolio Optimization” on page 8-85

References

[1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic
Function Subject to Bounds on Some of the Variables,” SIAM Journal on
Optimization, Vol. 6, Number 4, pp. 1040–1058, 1996.

[2] Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press,
London, UK, 1981.

[3] Gould, N. and P. L. Toint. “Preprocessing for quadratic programming.” Math.
Programming, Series B, Vol. 100, pp. 95–132, 2004.

See Also
linprog | lsqlin | optimoptions

